我正在努力使用一个非常简单的循环,如果运行“独立”,它将完美地运行,但如果我将其用作许多其他指令的外循环(如果仅运行1次迭代,它也能完美地工作) )。
简单的外循环是
表示范围内的i(0,somevalue): 做一些内心的指示
这是完整的代码,如果我放置一个维度1的范围,它就完美无缺,而如果我放置一个简单的维度范围2,它就永远不会结束:
import numpy as np
import numpy.ma as ma
import random
import matplotlib.pyplot as plt
i = int
x = np.zeros(1440)
class_x = np.zeros(1440)
w1 = np.array([0,6*60])
w2 = np.array([20*60,23*60])
x[w1[0]:(w1[1])] = np.full(np.diff(w1),0.001)
x[w2[0]:(w2[1])] = np.full(np.diff(w2),0.001)
x_masked = np.zeros_like(ma.masked_not_equal(x,0.001))
c = 10
func_time = 300
max_free_spot = int
i = 0
for i in range(0,1):
tot_time = 0
switch_count = 0
switch_ons = []
while
tot_time <= func_time:
switch_on = random.choice([random.randint(w1[0],(w1[1]-c)),random.randint(w2[0],(w2[1]-c))])
if x[switch_on] == 0.001:
if switch_on in range(w1[0],w1[1]):
if np.any(x[switch_on:w1[1]]!=0.001):
next_switch = [switch_on + k[0] for k in np.where(x[switch_on:]!=0.001)]
if (next_switch[0] - switch_on) >= c and max_free_spot >= c:
upper_limit = min((next_switch[0]-switch_on),min(func_time,w1[1]-switch_on))
elif (next_switch[0] - switch_on) < c and max_free_spot >= c:
continue
else: upper_limit = next_switch[0]-switch_on
else:
upper_limit = min(func_time,w1[1]-switch_on) #max random length of cycle
if upper_limit >= c:
indexes = np.arange(switch_on,switch_on+(random.randint(c,upper_limit)))
else:
indexes = np.arange(switch_on,switch_on+upper_limit)
else:
if np.any(x[switch_on:w2[1]]!=0.001):
next_switch = [switch_on + k[0] for k in np.where(x[switch_on:]!=0.001)]
if (next_switch[0] - switch_on) >= c:
upper_limit = min((next_switch[0]-switch_on),min(func_time,w2[1]-switch_on))
elif (next_switch[0] - switch_on) < c and max_free_spot >= c:
continue
else: upper_limit = next_switch[0]-switch_on
else:
upper_limit = min(func_time,w2[1]-switch_on)
if upper_limit >= c:
indexes = np.arange(switch_on,switch_on+(random.randint(c,upper_limit)))
else:
indexes = np.arange(switch_on,switch_on+upper_limit)
tot_time = tot_time + indexes.size
switch_ons.append(switch_on)
if tot_time > func_time:
indexes_adj = indexes[:-(tot_time-func_time)]
coincidence = random.randint(1,5)
np.put(x_masked,indexes_adj,(2*coincidence),mode='clip')
np.put(x,indexes_adj,(2*coincidence))
x_masked = np.zeros_like(ma.masked_greater_equal(x_masked,0.001))
tot_time = (tot_time - indexes.size) + indexes_adj.size
switch_count = switch_count + 1
break
else:
coincidence = random.randint(1,5)
np.put(x_masked,indexes,(2*coincidence),mode='clip')
np.put(x,indexes,(2*coincidence))
x_masked = np.zeros_like(ma.masked_greater_equal(x_masked,0.001))
tot_time = tot_time
switch_count = switch_count + 1
free_spots = []
for j in ma.notmasked_contiguous(x_masked):
free_spots.append(j.stop-j.start)
max_free_spot = max(free_spots)
class_x = class_x + x
plt.plot(class_x)
真的非常感谢任何帮助