我运行的项目是来自Github的C3D-tensorflow,当我使用train_c3d_ucf101.py
训练网络时,错误显示:
ValueError:无法为Tensor u提供形状值(10,0) '占位符:0',其形状为'(10,16,112,112,3)'
这是我的环境:Ubantu16.04,tensorflow1.4,python2.7。我是一个学习张量流的新人,所以你能告诉我如何找到Placeholder:0
,我该怎么做才能解决这个问题?先感谢您!
train_c3d_ucf101.py
:
"""Trains and Evaluates the MNIST network using a feed dictionary."""
# pylint: disable=missing-docstring
import os
import time
import numpy
from six.moves import xrange # pylint: disable=redefined-builtin
import tensorflow as tf
import input_data
import c3d_model
import math
import numpy as np
# Basic model parameters as external flags.
flags = tf.app.flags
gpu_num = 1
#flags.DEFINE_float('learning_rate', 0.0, 'Initial learning rate.')
flags.DEFINE_integer('max_steps', 5000, 'Number of steps to run trainer.')
flags.DEFINE_integer('batch_size', 10, 'Batch size.')
FLAGS = flags.FLAGS
MOVING_AVERAGE_DECAY = 0.9999
model_save_dir = './models'
def placeholder_inputs(batch_size):
"""Generate placeholder variables to represent the input tensors.
These placeholders are used as inputs by the rest of the model building
code and will be fed from the downloaded data in the .run() loop, below.
Args:
batch_size: The batch size will be baked into both placeholders.
Returns:
images_placeholder: Images placeholder.
labels_placeholder: Labels placeholder.
"""
# Note that the shapes of the placeholders match the shapes of the full
# image and label tensors, except the first dimension is now batch_size
# rather than the full size of the train or test data sets.
images_placeholder = tf.placeholder(tf.float32, shape=(batch_size,
c3d_model.NUM_FRAMES_PER_CLIP,
c3d_model.CROP_SIZE,
c3d_model.CROP_SIZE,
c3d_model.CHANNELS))
labels_placeholder = tf.placeholder(tf.int64, shape=(batch_size))
return images_placeholder, labels_placeholder
def average_gradients(tower_grads):
average_grads = []
for grad_and_vars in zip(*tower_grads):
grads = []
for g, _ in grad_and_vars:
expanded_g = tf.expand_dims(g, 0)
grads.append(expanded_g)
grad = tf.concat(grads, 0)
grad = tf.reduce_mean(grad, 0)
v = grad_and_vars[0][1]
grad_and_var = (grad, v)
average_grads.append(grad_and_var)
return average_grads
def tower_loss(name_scope, logit, labels):
cross_entropy_mean = tf.reduce_mean(
tf.nn.sparse_softmax_cross_entropy_with_logits(labels=labels,logits=logit)
)
tf.summary.scalar(
name_scope + '_cross_entropy',
cross_entropy_mean
)
weight_decay_loss = tf.get_collection('weightdecay_losses')
tf.summary.scalar(name_scope + '_weight_decay_loss', tf.reduce_mean(weight_decay_loss) )
# Calculate the total loss for the current tower.
total_loss = cross_entropy_mean + weight_decay_loss
tf.summary.scalar(name_scope + '_total_loss', tf.reduce_mean(total_loss) )
return total_loss
def tower_acc(logit, labels):
correct_pred = tf.equal(tf.argmax(logit, 1), labels)
accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))
return accuracy
def _variable_on_cpu(name, shape, initializer):
with tf.device('/cpu:0'):
var = tf.get_variable(name, shape, initializer=initializer)
return var
def _variable_with_weight_decay(name, shape, wd):
var = _variable_on_cpu(name, shape, tf.contrib.layers.xavier_initializer())
if wd is not None:
weight_decay = tf.nn.l2_loss(var)*wd
tf.add_to_collection('weightdecay_losses', weight_decay)
return var
def run_training():
# Get the sets of images and labels for training, validation, and
# Tell TensorFlow that the model will be built into the default Graph.
# Create model directory
if not os.path.exists(model_save_dir):
os.makedirs(model_save_dir)
use_pretrained_model = True
model_filename = "./sports1m_finetuning_ucf101.model"
with tf.Graph().as_default():
global_step = tf.get_variable(
'global_step',
[],
initializer=tf.constant_initializer(0),
trainable=False
)
images_placeholder, labels_placeholder = placeholder_inputs(
FLAGS.batch_size * gpu_num
)
tower_grads1 = []
tower_grads2 = []
logits = []
opt_stable = tf.train.AdamOptimizer(1e-4)
opt_finetuning = tf.train.AdamOptimizer(1e-3)
with tf.variable_scope('var_name') as var_scope:
weights = {
'wc1': _variable_with_weight_decay('wc1', [3, 3, 3, 3, 64], 0.0005),
'wc2': _variable_with_weight_decay('wc2', [3, 3, 3, 64, 128], 0.0005),
'wc3a': _variable_with_weight_decay('wc3a', [3, 3, 3, 128, 256], 0.0005),
'wc3b': _variable_with_weight_decay('wc3b', [3, 3, 3, 256, 256], 0.0005),
'wc4a': _variable_with_weight_decay('wc4a', [3, 3, 3, 256, 512], 0.0005),
'wc4b': _variable_with_weight_decay('wc4b', [3, 3, 3, 512, 512], 0.0005),
'wc5a': _variable_with_weight_decay('wc5a', [3, 3, 3, 512, 512], 0.0005),
'wc5b': _variable_with_weight_decay('wc5b', [3, 3, 3, 512, 512], 0.0005),
'wd1': _variable_with_weight_decay('wd1', [8192, 4096], 0.0005),
'wd2': _variable_with_weight_decay('wd2', [4096, 4096], 0.0005),
'out': _variable_with_weight_decay('wout', [4096, c3d_model.NUM_CLASSES], 0.0005)
}
biases = {
'bc1': _variable_with_weight_decay('bc1', [64], 0.000),
'bc2': _variable_with_weight_decay('bc2', [128], 0.000),
'bc3a': _variable_with_weight_decay('bc3a', [256], 0.000),
'bc3b': _variable_with_weight_decay('bc3b', [256], 0.000),
'bc4a': _variable_with_weight_decay('bc4a', [512], 0.000),
'bc4b': _variable_with_weight_decay('bc4b', [512], 0.000),
'bc5a': _variable_with_weight_decay('bc5a', [512], 0.000),
'bc5b': _variable_with_weight_decay('bc5b', [512], 0.000),
'bd1': _variable_with_weight_decay('bd1', [4096], 0.000),
'bd2': _variable_with_weight_decay('bd2', [4096], 0.000),
'out': _variable_with_weight_decay('bout', [c3d_model.NUM_CLASSES], 0.000),
}
for gpu_index in range(0, gpu_num):
with tf.device('/gpu:%d' % gpu_index):
varlist2 = [ weights['out'],biases['out'] ]
varlist1 = list( set(weights.values() + biases.values()) - set(varlist2) )
logit = c3d_model.inference_c3d(
images_placeholder[gpu_index * FLAGS.batch_size:(gpu_index + 1) * FLAGS.batch_size,:,:,:,:],
0.5,
FLAGS.batch_size,
weights,
biases
)
loss_name_scope = ('gpud_%d_loss' % gpu_index)
loss = tower_loss(
loss_name_scope,
logit,
labels_placeholder[gpu_index * FLAGS.batch_size:(gpu_index + 1) * FLAGS.batch_size]
)
grads1 = opt_stable.compute_gradients(loss, varlist1)
grads2 = opt_finetuning.compute_gradients(loss, varlist2)
tower_grads1.append(grads1)
tower_grads2.append(grads2)
logits.append(logit)
logits = tf.concat(logits,0)
accuracy = tower_acc(logits, labels_placeholder)
tf.summary.scalar('accuracy', accuracy)
grads1 = average_gradients(tower_grads1)
grads2 = average_gradients(tower_grads2)
apply_gradient_op1 = opt_stable.apply_gradients(grads1)
apply_gradient_op2 = opt_finetuning.apply_gradients(grads2, global_step=global_step)
variable_averages = tf.train.ExponentialMovingAverage(MOVING_AVERAGE_DECAY)
variables_averages_op = variable_averages.apply(tf.trainable_variables())
train_op = tf.group(apply_gradient_op1, apply_gradient_op2, variables_averages_op)
null_op = tf.no_op()
# Create a saver for writing training checkpoints.
saver = tf.train.Saver(weights.values() + biases.values())
init = tf.global_variables_initializer()
# Create a session for running Ops on the Graph.
sess = tf.Session(
config=tf.ConfigProto(allow_soft_placement=True)
)
sess.run(init)
if os.path.isfile(model_filename) and use_pretrained_model:
saver.restore(sess, model_filename)
# Create summary writter
merged = tf.summary.merge_all()
train_writer = tf.summary.FileWriter('./visual_logs/train', sess.graph)
test_writer = tf.summary.FileWriter('./visual_logs/test', sess.graph)
for step in xrange(FLAGS.max_steps):
start_time = time.time()
train_images, train_labels, _, _, _ = input_data.read_clip_and_label(
filename='list/train.list',
batch_size=FLAGS.batch_size * gpu_num,
num_frames_per_clip=c3d_model.NUM_FRAMES_PER_CLIP,
crop_size=c3d_model.CROP_SIZE,
shuffle=True
)
sess.run(train_op, feed_dict={
images_placeholder: train_images,
labels_placeholder: train_labels
})
duration = time.time() - start_time
print('Step %d: %.3f sec' % (step, duration))
# Save a checkpoint and evaluate the model periodically.
if (step) % 10 == 0 or (step + 1) == FLAGS.max_steps:
saver.save(sess, os.path.join(model_save_dir, 'c3d_ucf_model'), global_step=step)
print('Training Data Eval:')
summary, acc = sess.run(
[merged, accuracy],
feed_dict={images_placeholder: train_images,
labels_placeholder: train_labels
})
print ("accuracy: " + "{:.5f}".format(acc))
train_writer.add_summary(summary, step)
print('Validation Data Eval:')
val_images, val_labels, _, _, _ = input_data.read_clip_and_label(
filename='list/test.list',
batch_size=FLAGS.batch_size * gpu_num,
num_frames_per_clip=c3d_model.NUM_FRAMES_PER_CLIP,
crop_size=c3d_model.CROP_SIZE,
shuffle=True
)
summary, acc = sess.run(
[merged, accuracy],
feed_dict={
images_placeholder: val_images,
labels_placeholder: val_labels
})
print ("accuracy: " + "{:.5f}".format(acc))
test_writer.add_summary(summary, step)
print("done")
def main(_):
run_training()
if __name__ == '__main__':
tf.app.run()
如果您想查看其他文件,请告诉我,我会告诉您。