我刚开始用tensorflow学习深度学习,所以我想实现我今天阅读的教程link。实际代码是这样的,我试图实现一个非常基本的NN来对0-9中的数字进行分类。
import tensorflow as tf
# load dataset
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets('MNIST_data/', one_hot=True)
X = tf.placeholder(tf.float32, [None, 28, 28, 1])
W = tf.Variable(tf.zeros([784, 10]))
b = tf.Variable(tf.zeros([10]))
init = tf.initialize_all_variables()
# model
Y = tf.nn.softmax(tf.matmul(tf.reshape(X,[-1, 784]), W) + b)
# placeholder fr correct labels
Y_ = tf.placeholder(tf.float32, [None, 10])
# loss function
cross_entropy = -tf.reduce_sum(Y_ * tf.log(Y))
# % of a correct answer found in batch
is_correct = tf.equal(tf.argmax(Y,1), tf.argmax(Y_,1))
accuracy = tf.reduce_mean(tf.cast(is_correct, tf.float32))
# optimizer, workhorse of a NN
optimizer = tf.train.GradientDescentOptimizer(0.003)
train_step = optimizer.minimize(cross_entropy)
# start the session
sess = tf.Session()
sess.run(init)
# feed the data for training
for i in range(10000):
# load batch of images and correct answers
batch_X, batch_Y = mnist.train.next_batch(100)
train_data={X: batch_X, Y_: batch_Y}
# train
sess.run(optimizer, feed_dict=train_data)
# succes ?
a,c = sess.run([accuracy, cross_entropy], feed=train_data)
# success on test data
test_data={X: mnist.test.images, Y_: mnist.test.labels}
a,c = sess.run([accuracy, cross_entropy], feed=test_data)
但是当我尝试运行时,我会收到这样的错误,
I tensorflow/core/common_runtime/gpu/gpu_device.cc:885] Found device 0 with properties:
name: GeForce 840M
major: 5 minor: 0 memoryClockRate (GHz) 1.124
pciBusID 0000:03:00.0
Total memory: 1.96GiB
Free memory: 1.72GiB
I tensorflow/core/common_runtime/gpu/gpu_device.cc:906] DMA: 0
I tensorflow/core/common_runtime/gpu/gpu_device.cc:916] 0: Y
I tensorflow/core/common_runtime/gpu/gpu_device.cc:975] Creating TensorFlow device (/gpu:0) -> (device: 0, name: GeForce 840M, pci bus id: 0000:03:00.0)
Traceback (most recent call last):
File "mnist_v1.py", line 41, in <module>
sess.run(optimizer, feed_dict=train_data)
File "/home/gopi34/.local/lib/python3.5/site-packages/tensorflow/python/client/session.py", line 767, in run
run_metadata_ptr)
File "/home/gopi34/.local/lib/python3.5/site-packages/tensorflow/python/client/session.py", line 944, in _run
% (np_val.shape, subfeed_t.name, str(subfeed_t.get_shape())))
ValueError: Cannot feed value of shape (100, 784) for Tensor 'Placeholder:0', which has shape '(?, 28, 28, 1)'
答案 0 :(得分:1)
您应该使用大小为A = 3; // at #1
#1 // (does not matter) --> #2
A <= A + 1; // #2 will do A + 1 and wait till the end of the cycle
B <= A + 1; // #2 same as above
// at the end of the cycle #2 (nba scheduling bucket) before switching to #3
// A and B will be assigned '4'
#1 // --> #3
// new values of A and B are available here (4)
$display("Non-blocking: A= %d B= %d", A, B );
的占位符,即线性化每个图像。