ValueError:无法为Tensor' x:0'提供形状值(64,),它具有形状'(?,100,100,3)'

时间:2018-03-18 04:17:22

标签: python tensorflow

从skimage import io,转换:

        import os
        import tensorflow as tf
        import numpy as np
        import time
        import glob
        import os
        os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'




        path = 'D:/data/datasets/flower_photos/'
        model_path = 'D:/data/model_save'

        w = 100
        h = 100
        c = 3

        def read_image(path):
            cate=[path+x for x in os.listdir(path) if os.path.isdir(path+x)]
            imgs=[]
            labels = []

            for idx,folder in enumerate(cate):
                for im in glob.glob(folder+'/*.jpg'):
                    #print('reading the images:%s'%(im))
                    img = io.imread(im)
                    img = transform.resize(img,(w,h))
                    imgs.append(idx)
                    labels.append(idx)
            return (np.asanyarray(imgs,np.float32),np.asanyarray(labels,np.int32))
        data,label = read_image(path)


        num_exaple = data.shape[0]
        arr = np.array(num_exaple)
        #np.random.shuffle(arr)
        #label = label[arr]

        ratio = 0.8
        s = np.int(num_exaple*ratio)
        x_train = data[:s]
        y_train = data[:s]
        x_val = data[s:]
        y_val = data[s:]

        x=tf.placeholder(tf.float32,shape=[None,w,h,c],name='x')
        y_=tf.placeholder(tf.int32,shape=[None,],name='y_')

        def inference(input_tensor, train, regularizer):
            with tf.variable_scope('layer1-conv1'):
                conv1_weights = tf.get_variable("weight",[5,5,3,32],initializer=tf.truncated_normal_initializer(stddev=0.1))
                conv1_biases = tf.get_variable("bias", [32], initializer=tf.constant_initializer(0.0))
                conv1 = tf.nn.conv2d(input_tensor, conv1_weights, strides=[1, 1, 1, 1], padding='SAME')
                relu1 = tf.nn.relu(tf.nn.bias_add(conv1, conv1_biases))

            with tf.name_scope("layer2-pool1"):
                pool1 = tf.nn.max_pool(relu1, ksize = [1,2,2,1],strides=[1,2,2,1],padding="VALID")

            with tf.variable_scope("layer3-conv2"):
                conv2_weights = tf.get_variable("weight",[5,5,32,64],initializer=tf.truncated_normal_initializer(stddev=0.1))
                conv2_biases = tf.get_variable("bias", [64], initializer=tf.constant_initializer(0.0))
                conv2 = tf.nn.conv2d(pool1, conv2_weights, strides=[1, 1, 1, 1], padding='SAME')
                relu2 = tf.nn.relu(tf.nn.bias_add(conv2, conv2_biases))

            with tf.name_scope("layer4-pool2"):
                pool2 = tf.nn.max_pool(relu2, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='VALID')

            with tf.variable_scope("layer5-conv3"):
                conv3_weights = tf.get_variable("weight",[3,3,64,128],initializer=tf.truncated_normal_initializer(stddev=0.1))
                conv3_biases = tf.get_variable("bias", [128], initializer=tf.constant_initializer(0.0))
                conv3 = tf.nn.conv2d(pool2, conv3_weights, strides=[1, 1, 1, 1], padding='SAME')
                relu3 = tf.nn.relu(tf.nn.bias_add(conv3, conv3_biases))

            with tf.name_scope("layer6-pool3"):
                pool3 = tf.nn.max_pool(relu3, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='VALID')

            with tf.variable_scope("layer7-conv4"):
                conv4_weights = tf.get_variable("weight",[3,3,128,128],initializer=tf.truncated_normal_initializer(stddev=0.1))
                conv4_biases = tf.get_variable("bias", [128], initializer=tf.constant_initializer(0.0))
                conv4 = tf.nn.conv2d(pool3, conv4_weights, strides=[1, 1, 1, 1], padding='SAME')
                relu4 = tf.nn.relu(tf.nn.bias_add(conv4, conv4_biases))

            with tf.name_scope("layer8-pool4"):
                pool4 = tf.nn.max_pool(relu4, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='VALID')
                nodes = 6*6*128
                reshaped = tf.reshape(pool4,[-1,nodes])

            with tf.variable_scope('layer9-fc1'):
                fc1_weights = tf.get_variable("weight", [nodes, 1024],
                                              initializer=tf.truncated_normal_initializer(stddev=0.1))
                if regularizer != None: tf.add_to_collection('losses', regularizer(fc1_weights))
                fc1_biases = tf.get_variable("bias", [1024], initializer=tf.constant_initializer(0.1))

                fc1 = tf.nn.relu(tf.matmul(reshaped, fc1_weights) + fc1_biases)
                if train: fc1 = tf.nn.dropout(fc1, 0.5)

            with tf.variable_scope('layer10-fc2'):
                fc2_weights = tf.get_variable("weight", [1024, 512],
                                              initializer=tf.truncated_normal_initializer(stddev=0.1))
                if regularizer != None: tf.add_to_collection('losses', regularizer(fc2_weights))
                fc2_biases = tf.get_variable("bias", [512], initializer=tf.constant_initializer(0.1))

                fc2 = tf.nn.relu(tf.matmul(fc1, fc2_weights) + fc2_biases)
                if train: fc2 = tf.nn.dropout(fc2, 0.5)

            with tf.variable_scope('layer11-fc3'):
                fc3_weights = tf.get_variable("weight", [512, 5],
                                              initializer=tf.truncated_normal_initializer(stddev=0.1))
                if regularizer != None: tf.add_to_collection('losses', regularizer(fc3_weights))
                fc3_biases = tf.get_variable("bias", [5], initializer=tf.constant_initializer(0.1))
                logit = tf.matmul(fc2, fc3_weights) + fc3_biases

            return logit


        regularizer = tf.contrib.layers.l2_regularizer(0.0001)
        logits = inference(x,False,regularizer)


        b = tf.constant(value=1,dtype=tf.float32)
        logits_eval = tf.multiply(logits,b,name='logits_eval')

        loss=tf.nn.sparse_softmax_cross_entropy_with_logits(logits=logits,
    labels=y_)
        train_op=tf.train.AdamOptimizer(learning_rate=0.001).minimize(loss)
        correct_prediction = tf.equal(tf.cast(tf.argmax(logits,1),tf.int32), y_)
        acc= tf.reduce_mean(tf.cast(correct_prediction, tf.float32))



        def minibatches(inputs=None, targets=None, batch_size=None, shuffle=False):
            assert len(inputs) == len(targets)
            if shuffle:
                indices = np.arange(len(inputs))
                np.random.shuffle(indices)
            for start_idx in range(0, len(inputs) - batch_size + 1, batch_size):
                if shuffle:
                    excerpt = indices[start_idx:start_idx + batch_size]
                else:
                    excerpt = slice(start_idx, start_idx + batch_size)
                yield inputs[excerpt], targets[excerpt]




        n_epoch=10
        batch_size=64
        saver=tf.train.Saver()
        sess=tf.Session()
        sess.run(tf.global_variables_initializer())
        for epoch in range(n_epoch):
            start_time = time.time()


            train_loss, train_acc, n_batch = 0, 0, 0
            for x_train_a, y_train_a in minibatches(x_train, y_train, batch_size=64 , shuffle=True):
                _,err,ac=sess.run([train_op,loss,acc], feed_dict={x:x_train_a,y_:y_train_a})
                train_loss += err; train_acc += ac; n_batch += 1
            print("   train loss: %f" % (np.sum(train_loss)/ n_batch))
            print("   train acc: %f" % (np.sum(train_acc)/ n_batch))




            val_loss, val_acc, n_batch = 0, 0, 0
            for x_val_a, y_val_a in minibatches(x_val, y_val, batch_size, shuffle=False):
                err, ac = sess.run([loss,acc], feed_dict={x: x_val_a, y_: y_val_a})
                val_loss += err; val_acc += ac; n_batch += 1
            print("   validation loss: %f" % (np.sum(val_loss)/ n_batch))
            print("   validation acc: %f" % (np.sum(val_acc)/ n_batch))
        saver.save(sess,model_path)
        sess.close()

         1. `List item`

1 个答案:

答案 0 :(得分:2)

由于 w = 100,h = 100,c = 3 ,您已按如下方式定义了输入占位符x

x=tf.placeholder(tf.float32,shape=[None,w,h,c],name='x')

x的形状为(?,100,100,3)。这里是指批量大小(因为批量大小仅在培训时需要,但不构建图表)。

错误是因为您正在向占位符x_train_a提供形状为(64,)的一维数组x。显然,应该有一个错误,因为两个形状不匹配。

形状x (?,100,100,3)!= 形状x_train_a (64,)

作为一种快速解决方案,您可以尝试重新设置x_train_a,然后再将其添加到占位符x

x_train_a = x_train_a.reshape (64,100,100,3). 

此处 64 表示您的批量大小,它取代了?

希望这有帮助。