我试图解析语料库中的动词并将其列在词典中,并计算每个动词出现多少次传递,不及物动词和双传递。我想知道如何使用spacy来解析动词,并将它们标记为可传递,不及物动词和双传递。
答案 0 :(得分:1)
在这里,我总结了Mirith/Verb-categorizer
的代码。基本上,你可以遍历VERB
令牌并查看他们的孩子,将他们分类为传递,不及物或者传递。一个例子如下。
首先,导入spacy
,
import spacy
nlp = spacy.load('en')
假设你有一个令牌的例子,
tokens = nlp('I like this dog. It is pretty good. I saw a bird. We arrived at the classroom door with only seven seconds to spare.')
您可以根据需要创建以下函数将VERB
转换为新类型:
def check_verb(token):
"""Check verb type given spacy token"""
if token.pos_ == 'VERB':
indirect_object = False
direct_object = False
for item in token.children:
if(item.dep_ == "iobj" or item.dep_ == "pobj"):
indirect_object = True
if (item.dep_ == "dobj" or item.dep_ == "dative"):
direct_object = True
if indirect_object and direct_object:
return 'DITRANVERB'
elif direct_object and not indirect_object:
return 'TRANVERB'
elif not direct_object and not indirect_object:
return 'INTRANVERB'
else:
return 'VERB'
else:
return token.pos_
示例强>
[check_verb(t) for t in tokens] # ['PRON', 'TRAN', 'DET', 'NOUN', 'PUNCT', ...]