这里我试图获取公司的域名,公司名称存储在new.csv
中我使用的代码
import pandas as pd
import clearbit
import json
clearbit.key = 'sk_1915de5d2d7b6e245d6613e3d2188368'
df = pd.read_csv("/home/vipul/Desktop/new.csv", sep=',', encoding="utf-8")
saved_column = df['Company'].dropna()
print(saved_column)
i=0
res = []
for data in saved_column:
n = saved_column[i]
i = i+1
data = clearbit.NameToDomain.find(name=n)
if data is None null() res.append(data['domain'])
print(res)
df['domain'] = res
df.to_csv("/home/vipul/Desktop/new.csv",index = False, skipinitialspace=False)
print("File saved to desktop as new.csv")
输出代码
python ts.py
0 Accenture
1 AND Digital
2 Accenture
3 Kite Consulting Group
4 Capgemini
5 Accenture UK
Name: Company, dtype: object
['accenture.com']
['accenture.com', 'and.digital']
['accenture.com', 'and.digital', 'accenture.com']
Traceback (most recent call last):
File "ts.py", line 15, in <module>
res.append(data['domain'])
TypeError: 'NoneType' object is not subscriptable
如何在NoneType遇到的情况下给出一些默认值,并将其与new.csv中相应的公司名称一起存储
要保存在new.csv中的预期输出
Company domain
Accenture accenture.com
AND Digital and.digital
Accenture accenture.com
Kite Consulting Group None
Capgemini capgemini.com
Accenture UK None
答案 0 :(得分:0)
试试这个:
data = clearbit.NameToDomain.find(name=n)
try:
res.append(data['domain'])
except Exception as e:
#print(e)
res.append(None)
print(res)
答案 1 :(得分:0)
这对我有用
data=df.loc[i,'data column']
try:
res=clearbit.NameToDomain.find(name=data)['domain']
df.loc[i,'res']=res
except TypeError:
pass