使用Accord.NET SVM进行人脸识别(MulticlassSupportVectorMachine)

时间:2018-03-12 19:43:56

标签: c# svm face-recognition accord.net

我正在使用OpenFace Windows二进制文件和Accord .NET来创建基于Python的this人脸识别系统的C#版本。

OpenFace完成了大部分工作,我只需要训练一个SVM来对未知面部进行分类(概率),使用已知面作为输出类。

A" face"在此上下文中是一个充满面部测量值的CSV文件。理论上很简单。由于这似乎是best done使用one-vs-rest方法,因此我尝试使用API​​中的MulticlassSupportVectorMachine example

然而,据我所知,该示例使用其训练数据中的相同输入作为测试输入,因此我不确定训练结束和测试开始的确切位置,但我认为它在调用.Decide()

的行

这是我现在正在尝试的事情......

- 创建一些简单的容器类

    public class Result
    {
        public int[] predictions;
        public double[][] scores;
        public double[][] probability;
        public double error;
        public double loss;
    }

    public class KnownFaces
    {
        public double[][] input;
        public int[] output;
    }

    public class UnknownFaces
    {
        public double[][] input;
    }`

抓取已知面孔的编码

 // Load encoding from CSV
double[] aiden1Encoding = RecognizeFace.GetEncodingFromCSV(Application.StartupPath + @"\of\processed\aiden1.csv");
double[] aiden2Encoding = RecognizeFace.GetEncodingFromCSV(Application.StartupPath + @"\of\processed\aiden2.csv");
...
double[] kate1Encoding = RecognizeFace.GetEncodingFromCSV(Application.StartupPath + @"\of\processed\kate1.csv");
double[] kate2Encoding = RecognizeFace.GetEncodingFromCSV(Application.StartupPath + @"\of\processed\kate2.csv");
...
//... etc (about 20 pictures of each person)

抓取未知面孔的编码

double[] who1Encoding = RecognizeFace.GetEncodingFromCSV(Application.StartupPath + @"\of\processed\who1.csv");
double[] who2Encoding = RecognizeFace.GetEncodingFromCSV(Application.StartupPath + @"\of\processed\who2.csv");
...

将所有这些放入我的容器中

double[][] knownFacesFeatures = {
aiden1Encoding, aiden2Encoding, ... 
kate1Encoding, kate2Encoding, ...
};

double[][] unknownFacesFeatures = {
who1Encoding, who2Encoding ... 
};

RecognizeFace.KnownFaces knownFaces = new RecognizeFace.KnownFaces();
knownFaces.input = knownFacesFeatures;

RecognizeFace.UnknownFaces unknownFaces = new RecognizeFace.UnknownFaces();
unknownFaces.input = unknownFacesFeatures;

对已知面部的输出进行分类

knownFaces.output = new int[]
    {
    0,0,0 ... // Aiden
    1,1,1 ...  // Kate
    ...
    };

获得结果:

RecognizeFace.Result r = RecognizeFace.RecognizeFaces(knownFaces, unknownFaces);

...

public static Result RecognizeFaces(KnownFaces knownFaces, UnknownFaces unknownFaces)
        {
            Result toReturn = new Result();

            // Create the multi-class learning algorithm for the machine
            var teacher = new MulticlassSupportVectorLearning<Gaussian>()
            {
                // Configure the learning algorithm to use SMO to train the
                //  underlying SVMs in each of the binary class subproblems.
                Learner = (param) => new SequentialMinimalOptimization<Gaussian>()
                {
                    // Estimate a suitable guess for the Gaussian kernel's parameters.
                    // This estimate can serve as a starting point for a grid search.
                    UseKernelEstimation = true
                }
            };
            // Learn a machine
            var machine = teacher.Learn(knownFaces.input, knownFaces.output);


            // Create the multi-class learning algorithm for the machine
            var calibration = new MulticlassSupportVectorLearning<Gaussian>()
            {
                Model = machine, // We will start with an existing machine

                // Configure the learning algorithm to use Platt's calibration
                Learner = (param) => new ProbabilisticOutputCalibration<Gaussian>()
                {
                    Model = param.Model // Start with an existing machine
                }
            };



            // Configure parallel execution options
            calibration.ParallelOptions.MaxDegreeOfParallelism = 1;

            // Learn a machine
            calibration.Learn(knownFaces.input, knownFaces.output);

            // Obtain class predictions for each sample
            int[] predicted = machine.Decide(unknownFaces.input);
            toReturn.predictions = predicted;

            // Get class scores for each sample
            double[][] scores = machine.Scores(unknownFaces.input);
            toReturn.scores = scores;

            // Get log-likelihoods (should be same as scores)
            double[][] logl = machine.LogLikelihoods(unknownFaces.input);

            // Get probability for each sample
            double[][] prob = machine.Probabilities(unknownFaces.input);
            toReturn.probability = prob;

            //Compute classification error using mean accuracy (mAcc)
            //double error = new HammingLoss(knownFaces.output).Loss(predicted);
            //double loss = new CategoryCrossEntropyLoss(knownFaces.output).Loss(prob);
            //toReturn.error = error;
            //toReturn.loss = loss;

            return toReturn;

        }

问题是,如果我取消注释错误/丢失行,我会得到一个例外,

System.IndexOutOfRangeException: Index was outside the bounds of the array.
   at Accord.Math.Optimization.Losses.HammingLoss.Loss(Int32[] actual)
   at NETFaceRecognition.RecognizeFace.RecognizeFaces(KnownFaces knownFaces, UnknownFaces unknownFaces) 

如果我把它们遗漏,那么代码就会运行......并且不起作用。如果我迭代int []预测,我会得到完全错误的结果(通常):

Unknown Person #1's class: 2 Expected: 3 (Lena)
Unknown Person #2's class: 2 Expected: 3 (Lena)
Unknown Person #3's class: 2 Expected: 2 (James)
Unknown Person #4's class: 2 Expected: 2 (James)
Unknown Person #5's class: 3 Expected: (Unknown person, incorrect result expected)
Unknown Person #6's class: 0 Expected: 3 (Lena)
Unknown Person #7's class: 1 Expected: 2 (James)
Unknown Person #8's class: 3 Expected: 1 (Kate)

我的问题的要点是:我是否正确地实施了课程,我的问题存在于我的数据输入中,或者我误解了一些重要的东西? TIA

1 个答案:

答案 0 :(得分:0)

我很确定您收到的错误是因为尺寸不匹配。此外,我认为你在这里的逻辑错误会因不适当的数据集而丢失。你可以在knownFaces上学习并通过unknownFaces进行预测。

double error = new HammingLoss(knownFaces.output).Loss(predicted);

您可能需要对未在列车部件中使用的已知数据部分进行交叉验证。

有人这么想:

double error = new HammingLoss(knownFacesForPredicted.output).Loss(predicted);