RPart功能无法完成。如何改善时机?

时间:2018-03-12 14:18:22

标签: r decision-tree data-science categorical-data rpart

我在尝试通过rpart创建决策树时遇到问题,需要花费太多时间才能完成。

我不确定是否需要减少给定数据集的任何特征中的维度或因子。

您可以在下方找到数据集中的headstr。这也是它的link

   Funct.Area Environment ServiceType Ticket.Nature SLA.Result..4P. IRIS.Priority
2         FUN         DCF         FUN            SR              OK    Priority 3
5         APS         DCF         APS            SR          Defect    Priority 3
7         SEC         DCF         SEC            SR              OK    Priority 4
8         SEC         DCF         SEC            SR          Defect    Priority 4
9         FUN         DCF         FUN            SR              OK    Priority 3
10        SEC         DCF         SEC            SR              OK    Priority 3

'data.frame':   69250 obs. of  6 variables:
 $ Funct.Area     : Factor w/ 27 levels "0","812","APS",..: 13 3 26 26 13 26 26 26 26 26 ...
 $ Environment    : Factor w/ 29 levels " WS","812","BULK",..: 9 9 9 9 9 9 9 9 9 9 ...
 $ ServiceType    : Factor w/ 21 levels "APS","BULK","CNC",..: 8 1 18 18 8 18 18 18 18 18 ...
 $ Ticket.Nature  : Factor w/ 5 levels "BULK","CHG","HK",..: 5 5 5 5 5 5 5 5 5 5 ...
 $ SLA.Result..4P.: Factor w/ 5 levels "#¡REF!","#N/A",..: 5 3 5 3 5 5 5 5 5 5 ...
 $ IRIS.Priority  : Factor w/ 4 levels "Priority 1","Priority 2",..: 3 3 4 4 3 3 3 3 4 4 ...

我的理解是rpart包可以处理分类变量,直到32个不同因素。

有没有办法减少处理时间?

以下是R脚本的link

0 个答案:

没有答案