我一直在为我的学校项目开发一个识别数字的程序。为此,我使用了Python,Keras和MNIST数据集。这是我用来训练它的代码:
import keras
from keras.datasets import mnist
from keras.models import Sequential
from keras.layers import Dense, Dropout, Flatten
from keras.layers import Convolution2D, MaxPooling2D, Activation, AveragePooling2D
from keras import backend as K
import matplotlib.pyplot as plt
import matplotlib
batch_size = 32
num_classes = 10
epochs = 10
img_rows, img_cols = 28, 28
(x_train, y_train), (x_test, y_test) = mnist.load_data()
if K.image_data_format() == 'channels_first':
x_train = x_train.reshape(x_train.shape[0], 1, img_rows, img_cols)
x_test = x_test.reshape(x_test.shape[0], 1, img_rows, img_cols)
input_shape = (1, img_rows, img_cols)
else:
x_train = x_train.reshape(x_train.shape[0], img_rows, img_cols, 1)
x_test = x_test.reshape(x_test.shape[0], img_rows, img_cols, 1)
input_shape = (img_rows, img_cols, 1)
x_train = x_train.astype('float32')
x_test = x_test.astype('float32')
x_train /= 255
x_test /= 255
print('x_train shape:', x_train.shape)
print(x_train.shape[0], 'train samples')
print(x_test.shape[0], 'test samples')
y_train = keras.utils.to_categorical(y_train, num_classes)
y_test = keras.utils.to_categorical(y_test, num_classes)
model = Sequential()
model.add(Convolution2D(6, (5, 5), input_shape=input_shape))
model.add(Activation('sigmoid'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Convolution2D(12, (5, 5)))
model.add(Activation('sigmoid'))
model.add(AveragePooling2D(pool_size=(2, 2)))
model.add(Flatten())
model.add(Dense(192))
model.add(Dense(10))
model.add(Activation('sigmoid'))
model.add(Dense(10))
model.add(Activation('softmax'))
model.compile(loss=keras.losses.categorical_crossentropy,
optimizer=keras.optimizers.Adadelta(),
metrics=['accuracy'])
hist = model.fit(x_train, y_train,
batch_size=batch_size,
epochs=epochs,
verbose=1,
validation_data=(x_test, y_test))
score = model.evaluate(x_test, y_test, verbose=0)
print('Test loss:', score[0])
print('Test accuracy:', score[1])
model.save('model3.h5')
train_loss = hist.history['loss']
val_loss = hist.history['val_loss']
train_acc = hist.history['acc']
val_acc = hist.history['val_acc']
xc = range(epochs)
plt.figure(1,figsize=(7,5))
plt.plot(xc,train_loss)
plt.plot(xc,val_loss)
plt.xlabel('num of Epochs')
plt.ylabel('loss')
plt.title('train_loss vs val_loss')
plt.grid(True)
plt.legend(['train','val'])
print(plt.style.available) # use bmh, classic,ggplot for big pictures
plt.style.use(['classic'])
plt.figure(2,figsize=(7,5))
plt.plot(xc,train_acc)
plt.plot(xc,val_acc)
plt.xlabel('num of Epochs')
plt.ylabel('accuracy')
plt.title('train_acc vs val_acc')
plt.grid(True)
plt.legend(['train','val'],loc=4)
#print plt.style.available # use bmh, classic,ggplot for big pictures
plt.style.use(['classic'])
plt.show()
我将模型保存在名称model3.h5下。然而,在我写的另一个程序中,我试图用模型预测我保存了我在Paint中输入的数字。我有10张照片(0-9)并且预测模型预测所有数字都是8号,这当然是错误的。 但是,在训练期间,准确率接近98.5%,损失小于0.1。我做错了吗?
这是我运行的代码,用于在看不见的数据上进行预测。它将图片大小调整为28列和28行,以便它可以在我的CNN上运行。
这是我关于卷积神经网络的第一个项目,我不知道"一些额外的技术"这可以帮助我在看不见的数据上做得更好。
我也尝试了一些不同的架构(使用max pooling和relu激活函数进行卷积层,然后添加完整的连接层)但结果仍然相同。我也尝试将它设置为100或200个时代,仍然没有用......
import os, cv2
import numpy as np
import matplotlib.pyplot as plt
from sklearn.utils import shuffle
from sklearn.model_selection import train_test_split
from keras import backend as K
from keras.models import load_model
K.set_image_dim_ordering('tf')
from keras.utils import np_utils
from keras.models import Sequential
from keras.layers.core import Dense, Dropout, Activation, Flatten
from keras.layers.convolutional import Convolution2D, MaxPooling2D
from keras.optimizers import SGD,RMSprop,adam
PATH = os.getcwd()
data_path = PATH + '\myNumbers'
data_dir_list = os.listdir(data_path) #direktoriji unutra
img_data = []
for file in data_dir_list:
test_image = cv2.imread(data_path + "\\" + file)
test_image = cv2.cvtColor(test_image, cv2.COLOR_RGB2GRAY)
test_image = cv2.resize(test_image,(28,28))
test_image = np.array(test_image)
test_image = test_image.astype('float32')
test_image /= 255
print (test_image.shape)
test_image= np.expand_dims(test_image, axis=3)
test_image= np.expand_dims(test_image, axis=0)
print (test_image.shape)
img_data.append(test_image)
model = load_model("model3.h5")
for img in img_data:
print(model.predict(img))
print(model.predict_classes(img))