Spark结构化流式传输无法获取Kafka数据

时间:2018-03-12 10:12:43

标签: scala dataframe apache-kafka spark-streaming kafka-consumer-api

我使用spark 2.2.1,kafka_2.12-1.0.0和scala从kafka获取一些json数据,但是,我只连接kafka但没有数据输出。

这里是我的scala代码:

 def main(args: Array[String]) {
    val spark = SparkSession
      .builder()
      .appName("Spark structured streaming Kafka example")
       .master("local[2]")
      .getOrCreate()

    val inputstream = spark
      .readStream
      .format("kafka")
      .option("kafka.bootstrap.servers", "localhost:9092")
      .option("subscribe", "behavior")
      .option("group.id","test-consumer-group")
      .option("startingOffsets", "earliest")
      .load()

    import spark.implicits._
    println("===============================================================")
    val query  = inputstream //select($"data")
      .selectExpr("CAST(key AS STRING)","CAST(value AS STRING)")
      .writeStream
      .outputMode("append")
      .format("console")
      .trigger( Trigger.ProcessingTime("2 seconds"))
      .start()

    println("===============================================================" +query.isActive)
    query.awaitTermination()

这是我的pom.xml

      <properties>
    <spark.version>2.2.0</spark.version>
    <scala.version>2.11.6</scala.version>
  </properties>

  <dependencies>
    <dependency>
      <groupId>org.scala-lang</groupId>
      <artifactId>scala-library</artifactId>
      <version>${scala.version}</version>
    </dependency>

    <dependency>
      <groupId>org.apache.kafka</groupId>
      <artifactId>kafka_2.12</artifactId>
      <version>0.10.2.1</version>
    </dependency>

    <dependency>
      <groupId>org.apache.spark</groupId>
      <artifactId>spark-sql-kafka-0-10_2.11</artifactId>
      <version>2.2.1</version>
    </dependency>


  </dependencies>

我运行此代码,控制台没有显示来自kafka的任何数据。

这里是控制台输出:

    ===============================================================
18/03/12 17:00:47 INFO SparkSqlParser: Parsing command: CAST(key AS STRING)
18/03/12 17:00:47 INFO SparkSqlParser: Parsing command: CAST(value AS STRING)
18/03/12 17:00:48 INFO StreamExecution: Starting [id = 6648f18e-3ecd-4046-85ee-932fffaab70c, runId = cb6a9ae9-9460-4232-b8ed-342d48c2e524]. Use /D:/data/kafka to store the query checkpoint.
===============================================================true

    18/03/12 17:00:48 INFO ConsumerConfig: ConsumerConfig values: 
    auto.commit.interval.ms = 5000
    auto.offset.reset = earliest
    bootstrap.servers = [localhost:9092]
    check.crcs = true
    client.id = 
    connections.max.idle.ms = 540000
    enable.auto.commit = false
    exclude.internal.topics = true
    fetch.max.bytes = 52428800
    fetch.max.wait.ms = 500
    fetch.min.bytes = 1
    group.id = spark-kafka-source-1b918ced-93c2-4648-8a60-16f9695d12d6-2063137397-driver-0
    heartbeat.interval.ms = 3000
    interceptor.classes = null
    key.deserializer = class org.apache.kafka.common.serialization.ByteArrayDeserializer
    max.partition.fetch.bytes = 1048576
    max.poll.interval.ms = 300000
    max.poll.records = 1
    metadata.max.age.ms = 300000
    metric.reporters = []
    metrics.num.samples = 2
    metrics.recording.level = INFO
    metrics.sample.window.ms = 30000
    partition.assignment.strategy = [class org.apache.kafka.clients.consumer.RangeAssignor]
    receive.buffer.bytes = 65536
    reconnect.backoff.ms = 50
    request.timeout.ms = 305000
    retry.backoff.ms = 100
    sasl.jaas.config = null
    sasl.kerberos.kinit.cmd = /usr/bin/kinit
    sasl.kerberos.min.time.before.relogin = 60000
    sasl.kerberos.service.name = null
    sasl.kerberos.ticket.renew.jitter = 0.05
    sasl.kerberos.ticket.renew.window.factor = 0.8
    sasl.mechanism = GSSAPI
    security.protocol = PLAINTEXT
    send.buffer.bytes = 131072
    session.timeout.ms = 10000
    ssl.cipher.suites = null
    ssl.enabled.protocols = [TLSv1.2, TLSv1.1, TLSv1]
    ssl.endpoint.identification.algorithm = null
    ssl.key.password = null
    ssl.keymanager.algorithm = SunX509
    ssl.keystore.location = null
    ssl.keystore.password = null
    ssl.keystore.type = JKS
    ssl.protocol = TLS
    ssl.provider = null
    ssl.secure.random.implementation = null
    ssl.trustmanager.algorithm = PKIX
    ssl.truststore.location = null
    ssl.truststore.password = null
    ssl.truststore.type = JKS
    value.deserializer = class org.apache.kafka.common.serialization.ByteArrayDeserializer



Discovered coordinator KB2CMVMCIWDJT61.localdomain:9092 (id: 2147483647 rack: null) for group spark-kafka-source-1b918ced-93c2-4648-8a60-16f9695d12d6-2063137397-driver-0.

Marking the coordinator KB2CMVMCIWDJT61.localdomain:9092 (id: 2147483647 rack: null) dead for group spark-kafka-source-1b918ced-93c2-4648-8a60-16f9695d12d6-2063137397-driver-0

输出只表示我的消费者群体已经死亡。我的kafka运行良好,我可以使用控制台命令从主题&#34;行为&#34;中获取数据。简而言之,kafka和主题似乎没有错。我是Spark结构流媒体和Kafka的新手,希望得到你的帮助。

2 个答案:

答案 0 :(得分:1)

您不应该使用结构化流式传输设置group.id.根据Kafka特定配置:

  

group.id:Kafka源代码会为每个查询创建一个唯一的组ID   自动。

https://spark.apache.org/docs/2.2.0/structured-streaming-kafka-integration.html

答案 1 :(得分:0)

问题在于卡夫卡结束。尝试重启zookeeper。协调器死错误是重复发生还是仅发生一次?

如果它只出现一次那么就会出现连接问题而且你的火花没有连接到Kafka。查看您的localhost上是否正确设置了Kafka和zookeeper。 如果它反复出现,则意味着它正在连接但是还有一些其他问题,在这种情况下,请尝试重新启动zookeeper。