我可以从文档中看到rlang::enquo()
和rlang::quo()
在不同的上下文中使用。因此,我最近在函数声明中使用了rlang::enysm()
(见下文)。但是,在另一个SE函数调用中包含了一个意外的错误,我猜这个错误与懒惰的评估有关(如果我在force(x)
中f_enysm()
,它会消失。但似乎我也可以通过简单地使用sym(x)
而不是ensym(x)
来解决这个问题,因为x
是一个不传达任何环境信息的字符串(而不是quosures)。
这样安全吗?
如果是的话,我不知道何时应该ensym()
超过sym
而且建议的用法似乎与quo()
/ enquo()
使用的术语不一致,expr()
/ enexpr()
等。
library(rlang)
f_ensym <- function(data, x, fun) {
x <- fun(x)
head(dplyr::arrange(data, !!x))
}
f_ensym(mtcars, "cyl", sym)
#> mpg cyl disp hp drat wt qsec vs am gear carb
#> 1 22.8 4 108.0 93 3.85 2.320 18.61 1 1 4 1
#> 2 24.4 4 146.7 62 3.69 3.190 20.00 1 0 4 2
#> 3 22.8 4 140.8 95 3.92 3.150 22.90 1 0 4 2
#> 4 32.4 4 78.7 66 4.08 2.200 19.47 1 1 4 1
#> 5 30.4 4 75.7 52 4.93 1.615 18.52 1 1 4 2
#> 6 33.9 4 71.1 65 4.22 1.835 19.90 1 1 4 1
f_sym <- function(data, x) {
x <- sym(x)
head(dplyr::arrange(data, !!x))
}
g <- function(data, x, fun) {
fun(data, x)
}
g(mtcars, "cyl", f_ensym)
#> Error in fun(x): argument "fun" is missing, with no default
g(mtcars, "cyl", f_sym)
#> mpg cyl disp hp drat wt qsec vs am gear carb
#> 1 22.8 4 108.0 93 3.85 2.320 18.61 1 1 4 1
#> 2 24.4 4 146.7 62 3.69 3.190 20.00 1 0 4 2
#> 3 22.8 4 140.8 95 3.92 3.150 22.90 1 0 4 2
#> 4 32.4 4 78.7 66 4.08 2.200 19.47 1 1 4 1
#> 5 30.4 4 75.7 52 4.93 1.615 18.52 1 1 4 2
#> 6 33.9 4 71.1 65 4.22 1.835 19.90 1 1 4 1
# If I remove one level, I don't get the problematic behaviour.
f <- function(data, x, fun) {
x <- fun(x)
head(dplyr::arrange(data, !!x))
}
f(mtcars, "cyl", sym)
#> mpg cyl disp hp drat wt qsec vs am gear carb
#> 1 22.8 4 108.0 93 3.85 2.320 18.61 1 1 4 1
#> 2 24.4 4 146.7 62 3.69 3.190 20.00 1 0 4 2
#> 3 22.8 4 140.8 95 3.92 3.150 22.90 1 0 4 2
#> 4 32.4 4 78.7 66 4.08 2.200 19.47 1 1 4 1
#> 5 30.4 4 75.7 52 4.93 1.615 18.52 1 1 4 2
#> 6 33.9 4 71.1 65 4.22 1.835 19.90 1 1 4 1
f(mtcars, "cyl", ensym)
#> mpg cyl disp hp drat wt qsec vs am gear carb
#> 1 22.8 4 108.0 93 3.85 2.320 18.61 1 1 4 1
#> 2 24.4 4 146.7 62 3.69 3.190 20.00 1 0 4 2
#> 3 22.8 4 140.8 95 3.92 3.150 22.90 1 0 4 2
#> 4 32.4 4 78.7 66 4.08 2.200 19.47 1 1 4 1
#> 5 30.4 4 75.7 52 4.93 1.615 18.52 1 1 4 2
#> 6 33.9 4 71.1 65 4.22 1.835 19.90 1 1 4 1
另外,如果我删除中间函数f_sym()
和f_enysm()
并直接调用f()
,我就不会获得有问题的行为。
f <- function(data, x, fun) {
x <- fun(x)
head(dplyr::arrange(data, !!x))
}
f(mtcars, "cyl", sym)
#> mpg cyl disp hp drat wt qsec vs am gear carb
#> 1 22.8 4 108.0 93 3.85 2.320 18.61 1 1 4 1
#> 2 24.4 4 146.7 62 3.69 3.190 20.00 1 0 4 2
#> 3 22.8 4 140.8 95 3.92 3.150 22.90 1 0 4 2
#> 4 32.4 4 78.7 66 4.08 2.200 19.47 1 1 4 1
#> 5 30.4 4 75.7 52 4.93 1.615 18.52 1 1 4 2
#> 6 33.9 4 71.1 65 4.22 1.835 19.90 1 1 4 1
f(mtcars, "cyl", ensym)
#> mpg cyl disp hp drat wt qsec vs am gear carb
#> 1 22.8 4 108.0 93 3.85 2.320 18.61 1 1 4 1
#> 2 24.4 4 146.7 62 3.69 3.190 20.00 1 0 4 2
#> 3 22.8 4 140.8 95 3.92 3.150 22.90 1 0 4 2
#> 4 32.4 4 78.7 66 4.08 2.200 19.47 1 1 4 1
#> 5 30.4 4 75.7 52 4.93 1.615 18.52 1 1 4 2
#> 6 33.9 4 71.1 65 4.22 1.835 19.90 1 1 4 1
答案 0 :(得分:3)
ensym
可以同时引用引用和不引用的参数
f_ensym(mtcars, "cyl")
f_ensym(mtcars, cyl)
根据OP帖子中的更新示例,sym
获取字符串对象g
的时间只取三个参数,fun
部分为'f_ensym {{没有被传递的1}} fun`。我们可以再提出一个论点
which also have a