我需要对数似然项的后验样本来运行PSIS here,以便
log_lik : ndarray
Array of size n x m containing n posterior samples of the log likelihood
terms :math:`p(y_i|\theta^s)`.
其中小示例here是pip install pystan
和
import pystan
schools_code = """
data {
int<lower=0> J; // number of schools
real y[J]; // estimated treatment effects
real<lower=0> sigma[J]; // s.e. of effect estimates
}
parameters {
real mu;
real<lower=0> tau;
real eta[J];
}
transformed parameters {
real theta[J];
for (j in 1:J)
theta[j] = mu + tau * eta[j];
}
model {
eta ~ normal(0, 1);
y ~ normal(theta, sigma);
}
"""
schools_dat = {'J': 8,
'y': [28, 8, -3, 7, -1, 1, 18, 12],
'sigma': [15, 10, 16, 11, 9, 11, 10, 18]}
sm = pystan.StanModel(model_code=schools_code)
fit = sm.sampling(data=schools_dat, iter=1000, chains=4)
如何获得PyStan拟合模型的Log似然的后验样本?
答案 0 :(得分:3)
您可以通过执行以下操作获取Log-Likelihood的后验样本:logp = fit.extract()['lp__']
答案 1 :(得分:0)
我相信在这种情况下,计算对数似然的正确方法如下:
generated quantities {
vector[J] log_lik;
for (i in 1:J)
log_lik[i] = normal_lpdf(y[i] | theta, sigma);
}
之后,您可以运行以下psis:
loo, loos, ks = psisloo(fit['log_lik'])
print('PSIS-LOO value: {:.2f}'.format(loo))
完整代码将变为:
import pystan
from psis import psisloo
schools_code = """
data {
int<lower=0> J; // number of schools
real y[J]; // estimated treatment effects
real<lower=0> sigma[J]; // s.e. of effect estimates
}
parameters {
real mu;
real<lower=0> tau;
real eta[J];
}
transformed parameters {
real theta[J];
for (j in 1:J)
theta[j] = mu + tau * eta[j];
}
model {
eta ~ normal(0, 1);
y ~ normal(theta, sigma);
}
generated quantities {
vector[J] log_lik;
for (i in 1:J)
log_lik[i] = normal_lpdf(y[i] | theta, sigma);
}
"""
schools_dat = {'J': 8,
'y': [28, 8, -3, 7, -1, 1, 18, 12],
'sigma': [15, 10, 16, 11, 9, 11, 10, 18]}
sm = pystan.StanModel(model_code=schools_code)
fit = sm.sampling(data=schools_dat, iter=1000, chains=4)
loo, loos, ks = psisloo(fit['log_lik'])
print('PSIS-LOO value: {:.2f}'.format(loo))