我想在一组 public static final String SECURE_REMEMBER_ME_COOKIES = "yourstorefrontRememberMe";
@Resource(name = "guidCookieStrategy")
private GUIDCookieStrategy guidCookieStrategy;
@Override
public boolean beforeController(final HttpServletRequest request, final HttpServletResponse response,
final HandlerMethod handler) throws Exception
{
boolean redirect = true;
// We only care if the request is secure
if (request.isSecure())
{
// Check if the handler has our annotation
final RequireHardLogIn annotation = findAnnotation(handler, RequireHardLogIn.class);
if (annotation != null)
{
final String guid = (String) request.getSession().getAttribute(SECURE_GUID_SESSION_KEY);
if ((!getUserService().isAnonymousUser(getUserService().getCurrentUser()) || checkForAnonymousCheckout()) &&
checkForGUIDCookie(request, response, guid))
{
redirect = false;
}
if (redirect)
{
if(isRememberMeCookiePresent(request))
{
// If you find your guid is missing, lets recreate it.
guidCookieStrategy.setCookie(request, response);
return true;
}
else
{
LOG.warn((guid == null ? "missing secure token in session" : "no matching guid cookie") + ", redirecting");
getRedirectStrategy().sendRedirect(request, response, getRedirectUrl(request));
return false;
}
}
}
}
return true;
}
protected boolean isRememberMeCookiePresent(HttpServletRequest request) {
Cookie[] cookies = request.getCookies();
if ((cookies == null) || (cookies.length == 0)) {
return false;
}
for (Cookie cookie : cookies) {
if (SECURE_REMEMBER_ME_COOKIES.equals(cookie.getName())) {
return cookie.getValue() != null;
}
}
return false;
}
s中对位置n
中的所有元素求和。总和的值存储在传递给我的函数std::array
的{{1}}中。求和是通过递归"调用"完成的。模板化的类方法,用于对列的索引减少进行求和,直到我到达第0列,并且对于下一行都是相同的,直到我遇到第0行。
我也有一个循环版本也做同样的事情,我比较了执行这两种计算总和所需的时间。我期待看到模板化版本表现更好,但它的输出速度要慢约25倍。模板化版本有什么问题会让它变慢吗?
在开始之前,我受到this article"使用Metaprograms展开循环的启发"
该计划的输出是:
std::array
代码:
add_rows
答案 0 :(得分:1)
在阅读上面的评论后,我添加了一个循环,在每次迭代后执行总和10000次打印输出。
然后在每次迭代之前用随机值初始化要求和的数组,现在时间测量显示两种方法的速度几乎相等(两者都约为15个时钟)。
#include <iostream>
#include <array>
#include <numeric>
#include <chrono>
#include <functional>
#include <random>
template<size_t num_rows, size_t row_index, size_t num_columns, size_t column_index>
class sumRow;
template<size_t num_rows, size_t row_index, size_t num_columns>
class sumRow<num_rows, row_index, num_columns, 0>
{
public:
static inline int result(const std::array<std::array<int, num_rows>, num_columns>& arrays) noexcept
{
return arrays[0][row_index];
}
};
template<size_t num_rows, size_t row_index, size_t num_columns, size_t column_index>
class sumRow
{
public:
static inline int result(const std::array<std::array<int, num_rows>, num_columns>& arrays) noexcept
{
return arrays[column_index][row_index] + sumRow<num_rows, row_index, num_columns, column_index - 1>::result(arrays);
}
};
// Array of arrays
template<size_t num_rows, size_t row_index, size_t num_columns>
class sumRows;
template<size_t num_rows, size_t num_columns>
class sumRows<num_rows, 0, num_columns>
{
public:
static inline void result(const std::array<std::array<int, num_rows>, num_columns>& arrays, std::array<int, num_rows>& result) noexcept
{
result[0] = sumRow<num_rows, 0, num_columns, num_columns - 1>::result(arrays);
}
};
template<size_t num_rows, size_t row_index, size_t num_columns>
class sumRows
{
public:
static inline void result(const std::array<std::array<int, num_rows>, num_columns>& arrays, std::array<int, num_rows>& result) noexcept
{
result[row_index - 1] = sumRow<num_rows, row_index - 1, num_columns, num_columns - 1>::result(arrays);
sumRows<num_rows, row_index - 1, num_columns>::result(arrays, result);
}
};
template<size_t num_rows, size_t num_columns>
inline void sum_rows(const std::array<std::array<int, num_rows>, num_columns>& arrays, std::array<int, num_rows>& result)
{
sumRows<num_rows, num_rows, num_columns>::result(arrays, result);
};
template<size_t channel_size, size_t num_channels>
inline void loop_sum(const std::array<std::array<int, channel_size>, num_channels>& channels, std::array<int, channel_size>& results) noexcept
{
for (size_t sample_index = 0; sample_index < channel_size; ++sample_index)
{
int result = 0;
for (size_t channel_index = 0; channel_index < num_channels; ++channel_index)
{
result += channels[channel_index][sample_index];
}
results[sample_index] = result;
}
};
// Inspired by from https://stackoverflow.com/a/21995693/2996272
struct measure_cpu_clock
{
template<typename F, typename ...Args>
static clock_t execution(F&& func, Args&&... args)
{
auto start = std::clock();
std::forward<decltype(func)>(func)(std::forward<Args>(args)...);
return std::clock() - start;
}
};
template<typename T>
T get_random_int(T min, T max)
{
std::random_device rd;
std::mt19937 gen(rd());
std::uniform_int_distribution <T> dis(min, max);
return dis(gen);
}
template<size_t num_values>
void print_values(std::array<int, num_values>& array)
{
for (auto&& item : array)
{
std::cout << item << "<";
}
std::cout << std::endl;
}
const int num_columns = 850;
const int num_rows = 32;
using channel = std::array<int, num_rows>;
using func = std::function<void(const std::array<std::array<int, num_rows>, num_columns>&, std::array<int, num_rows>&)>;
clock_t perform_many(const func& f)
{
clock_t total_execution_time = 0;
int num_iterations = 10000;
for (int i = 0; i < num_iterations; ++i)
{
std::array<channel, num_columns> channels{};
for (auto&& item : channels)
{
std::iota(item.begin(), item.end(), get_random_int(0, 3));
}
channel results = {};
auto start = std::clock();
f(channels, results);
total_execution_time += (std::clock() - start);
print_values(results);
}
return total_execution_time / num_iterations;
}
int main()
{
// Templated version
auto template_execution_time = perform_many(sum_rows<num_rows, num_columns>);
auto loop_execution_time = perform_many(loop_sum<num_rows, num_columns>);
std::cout << "Templated version took: " << template_execution_time << " clocks" << std::endl;
std::cout << "Loop version took: " << loop_execution_time << " clock" << std::endl;
}