我正按照这些说明尝试校准鱼眼镜头 here 在那里你可以找到我用于校准部分的完整代码。
我到达这一点:
N_OK = len(objpoints)
K = np.zeros((3, 3))
D = np.zeros((4, 1))
rvecs = [np.zeros((1, 1, 3), dtype=np.float64) for i in range(N_OK)]
tvecs = [np.zeros((1, 1, 3), dtype=np.float64) for i in range(N_OK)]
rms, _, _, _, _ = \
cv2.fisheye.calibrate(
objpoints,
imgpoints,
gray.shape[::-1],
K,
D,
rvecs,
tvecs,
calibration_flags,
(cv2.TERM_CRITERIA_EPS+cv2.TERM_CRITERIA_MAX_ITER, 30, 1e-3)
)
print("Found " + str(N_OK) + " valid images for calibration")
print("DIM=" + str(_img_shape[::-1]))
print("K=np.array(" + str(K.tolist()) + ")")
print("D=np.array(" + str(D.tolist()) + ")")
我收到此错误:
Traceback (most recent call last)
<ipython-input-10-deaca9981fe4> in <module>()
13 tvecs,
14 calibration_flags,
---> 15 (cv2.TERM_CRITERIA_EPS+cv2.TERM_CRITERIA_MAX_ITER, 30, 1e-3)
16 )
17 print("Found " + str(N_OK) + " valid images for calibration")
error: C:\ci\opencv_1512688052760\work\modules\calib3d\src\fisheye.cpp:1414:
error: (-3) CALIB_CHECK_COND - Ill-conditioned matrix for input array 0 in
function cv::internal::CalibrateExtrinsics
我不明白发生了什么,我只能在互联网上找到这么少的信息,有没有人经历过类似的事情,知道如何解决这个问题?
由于
这些是我使用的棋盘图片:
答案 0 :(得分:3)
我认为这是因为你的变量calibration_flags设置为CALIB_CHECK_COND。 尝试禁用此标志。如果没有它,我就可以不对你的图像进行破坏(见下面的链接)。
我不确定这项检查的用途(documentation不是很明确)。这个标志拒绝了我的gopro英雄3的一些图像¹,即使棋盘可见并被检测到。在我的情况下,20个中的一个图像没有通过此测试。该图像的棋盘靠近左边界。
¹&gt; = 3.4.1 error message告诉你哪个图像没有通过测试
答案 1 :(得分:1)
我没有在python中找到代码,所以我手动检查了棋盘边缘上的图像,并将它们逐个删除,直到错误消失。
答案 2 :(得分:0)
正如@Ahmadiah所述,当棋盘格落在图像边缘附近时,可能会发生“病态”情况。解决此问题的一种方法是一张一张地删除图像,然后在导致校准失败的情况下重试。这是我们执行此操作的示例:
def calibrate_fisheye(all_image_points, all_true_points, image_size):
""" Calibrate a fisheye camera from matching points.
:param all_image_points: Sequence[Array(N, 2)[float32]] of (x, y) image coordinates of the points. (see cv2.findChessboardCorners)
:param all_true_points: Sequence[Array(N, 3)[float32]] of (x,y,z) points. (If from a grid, just put (x,y) on a regular grid and z=0)
Note that each of these sets of points can be in its own reference frame,
:param image_size: The (size_y, size_x) of the image.
:return: (rms, mtx, dist, rvecs, tvecs) where
rms: float - The root-mean-squared error
mtx: array[3x3] A 3x3 camera intrinsics matrix
dst: array[4x1] A (4x1) array of distortion coefficients
rvecs: Sequence[array[N,3,1]] of estimated rotation vectors for each set of true points
tvecs: Sequence[array[N,3,1]] of estimated translation vectors for each set of true points
"""
assert len(all_true_points) == len(all_image_points)
all_true_points = list(all_true_points) # Because we'll modify it in place
all_image_points = list(all_image_points)
while True:
assert len(all_true_points) > 0, "There are no valid images from which to calibrate."
try:
rms, mtx, dist, rvecs, tvecs = cv2.fisheye.calibrate(
objectPoints=[p[None, :, :] for p in all_true_points],
imagePoints=[p[:, None, :] for p in all_image_points],
image_size=image_size,
K=np.zeros((3, 3)),
D=np.zeros((4, 1)),
flags=cv2.fisheye.CALIB_RECOMPUTE_EXTRINSIC + cv2.fisheye.CALIB_CHECK_COND + cv2.fisheye.CALIB_FIX_SKEW,
criteria=(cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 30, 1e-6),
)
print('Found a calibration based on {} well-conditioned images.'.format(len(all_true_points)))
return rms, mtx, dist, rvecs, tvecs
except cv2.error as err:
try:
idx = int(err.message.split('array ')[1][0]) # Parse index of invalid image from error message
all_true_points.pop(idx)
all_image_points.pop(idx)
print("Removed ill-conditioned image {} from the data. Trying again...".format(idx))
except IndexError:
raise err
答案 3 :(得分:-1)
我的opencv版本是4.0+,我用这个方法sloves它
rms, _, _, _, _ = \
cv2.fisheye.calibrate(
objpoints,
imgpoints,
#gray.shape[::-1],
gray.shape,
K,
D,
rvecs,
tvecs,
calibration_flags,
(cv2.TERM_CRITERIA_EPS+cv2.TERM_CRITERIA_MAX_ITER, 30, 1e-3)
)