从seaborn docs开始,以下代码段将生成以下图表:
import numpy as np
import pandas as pd
import seaborn as sns
sns.set(style="white")
# Generate a random correlated bivariate dataset
rs = np.random.RandomState(5)
mean = [0, 0]
cov = [(1, .5), (.5, 1)]
x1, x2 = rs.multivariate_normal(mean, cov, 500).T
x1 = pd.Series(x1, name="$X_1$")
x2 = pd.Series(x2, name="$X_2$")
# Show the joint distribution using kernel density estimation
g = sns.jointplot(x1, x2, kind="kde", size=7, space=0)
用{替换g = sns.jointplot(x1, x2, kind="kde", size=7, space=0)
g = sns.jointplot(x1, x2, kind="reg", size=7, space=0)
会产生这个:
但我想将密度图与回归线一起绘制。像这样:
使用help(sns.jointplot
查看参数,似乎没有一种简单的方法可以实现这一目标:
Parameters
----------
x, y : strings or vectors
Data or names of variables in ``data``.
data : DataFrame, optional
DataFrame when ``x`` and ``y`` are variable names.
kind : { "scatter" | "reg" | "resid" | "kde" | "hex" }, optional
Kind of plot to draw.
stat_func : callable or None, optional
Function used to calculate a statistic about the relationship and
annotate the plot. Should map `x` and `y` either to a single value
or to a (value, p) tuple. Set to ``None`` if you don't want to
annotate the plot.
color : matplotlib color, optional
Color used for the plot elements.
size : numeric, optional
Size of the figure (it will be square).
ratio : numeric, optional
Ratio of joint axes size to marginal axes height.
space : numeric, optional
Space between the joint and marginal axes
dropna : bool, optional
If True, remove observations that are missing from ``x`` and ``y``.
{x, y}lim : two-tuples, optional
Axis limits to set before plotting.
{joint, marginal, annot}_kws : dicts, optional
Additional keyword arguments for the plot components.
kwargs : key, value pairings
Additional keyword arguments are passed to the function used to
draw the plot on the joint Axes, superseding items in the
``joint_kws`` dictionary.
或者在那里?
感谢您的任何建议!
答案 0 :(得分:5)
您似乎只想将regplot
绘制到jointplot
的主轴上。
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
sns.set(style="white")
rs = np.random.RandomState(5)
mean = [0, 0]
cov = [(1, .5), (.5, 1)]
x1, x2 = rs.multivariate_normal(mean, cov, 500).T
x1 = pd.Series(x1, name="$X_1$")
x2 = pd.Series(x2, name="$X_2$")
g = sns.jointplot(x1, x2, kind="kde", size=7, space=0)
sns.regplot(x1,x2, scatter=False, ax=g.ax_joint)
plt.show()