我试图学习这个算法, 我可以按照它是如何工作的,我理解大多数线,因为它取决于之前的教程,这里是一个解释算法的链接 https://www.cdn.geeksforgeeks.org/greedy-algorithms-set-2-kruskals-minimum-spanning-tree-mst/
这是算法
class Graph
{
// A class to represent a graph edge
class Edge implements Comparable<Edge>
{
int src, dest, weight;
// Comparator function used for sorting edges
// based on their weight
public int compareTo(Edge compareEdge)
{
return this.weight-compareEdge.weight;
}
};
// A class to represent a subset for union-find
class subset
{
int parent, rank;
};
int V, E; // V-> no. of vertices & E->no.of edges
Edge edge[]; // collection of all edges
// Creates a graph with V vertices and E edges
Graph(int v, int e)
{
V = v;
E = e;
edge = new Edge[E];
for (int i=0; i<e; ++i)
edge[i] = new Edge();
}
// A utility function to find set of an element i
// (uses path compression technique)
int find(subset subsets[], int i)
{
// find root and make root as parent of i (path compression)
if (subsets[i].parent != i)
subsets[i].parent = find(subsets, subsets[i].parent);
return subsets[i].parent;
}
// A function that does union of two sets of x and y
// (uses union by rank)
void Union(subset subsets[], int x, int y)
{
int xroot = find(subsets, x);
int yroot = find(subsets, y);
// Attach smaller rank tree under root of high rank tree
// (Union by Rank)
if (subsets[xroot].rank < subsets[yroot].rank)
subsets[xroot].parent = yroot;
else if (subsets[xroot].rank > subsets[yroot].rank)
subsets[yroot].parent = xroot;
// If ranks are same, then make one as root and increment
// its rank by one
else
{
subsets[yroot].parent = xroot;
subsets[xroot].rank++;
}
}
// The main function to construct MST using Kruskal's algorithm
void KruskalMST()
{
Edge result[] = new Edge[V]; // Tnis will store the resultant MST
int e = 0; // An index variable, used for result[]
int i = 0; // An index variable, used for sorted edges
for (i=0; i<V; ++i)
result[i] = new Edge();
// Step 1: Sort all the edges in non-decreasing order of their
// weight. If we are not allowed to change the given graph, we
// can create a copy of array of edges
Arrays.sort(edge);
// Allocate memory for creating V ssubsets
subset subsets[] = new subset[V];
for(i=0; i<V; ++i)
subsets[i]=new subset();
// Create V subsets with single elements
for (int v = 0; v < V; ++v)
{
subsets[v].parent = v;
subsets[v].rank = 0;
}
i = 0; // Index used to pick next edge
// Number of edges to be taken is equal to V-1
while (e < V - 1)
{
// Step 2: Pick the smallest edge. And increment
// the index for next iteration
Edge next_edge = new Edge();
next_edge = edge[i++];
int x = find(subsets, next_edge.src);
int y = find(subsets, next_edge.dest);
// If including this edge does't cause cycle,
// include it in result and increment the index
// of result for next edge
if (x != y)
{
result[e++] = next_edge;
Union(subsets, x, y);
}
// Else discard the next_edge
}
// print the contents of result[] to display
// the built MST
System.out.println("Following are the edges in " +
"the constructed MST");
for (i = 0; i < e; ++i)
System.out.println(result[i].src+" -- " +
result[i].dest+" == " + result[i].weight);
}
// Driver Program
public static void main (String[] args)
{
/* Let us create following weighted graph
10
0--------1
| \ |
6| 5\ |15
| \ |
2--------3
4 */
int V = 4; // Number of vertices in graph
int E = 5; // Number of edges in graph
Graph graph = new Graph(V, E);
// add edge 0-1
graph.edge[0].src = 0;
graph.edge[0].dest = 1;
graph.edge[0].weight = 10;
// add edge 0-2
graph.edge[1].src = 0;
graph.edge[1].dest = 2;
graph.edge[1].weight = 6;
// add edge 0-3
graph.edge[2].src = 0;
graph.edge[2].dest = 3;
graph.edge[2].weight = 5;
// add edge 1-3
graph.edge[3].src = 1;
graph.edge[3].dest = 3;
graph.edge[3].weight = 15;
// add edge 2-3
graph.edge[4].src = 2;
graph.edge[4].dest = 3;
graph.edge[4].weight = 4;
graph.KruskalMST();
}
}
我无法理解算法中涉及的这段代码
public int compareTo(Edge compareEdge)
{
return this.weight-compareEdge.weight;
}
我的意思是当程序执行这部分时?在巫婆系?
答案 0 :(得分:1)
在对Edges数组进行排序时,在此行中隐式使用了它:
Arrays.sort(edge);
Edge类实现Comparable接口。它具有compareTo方法,该方法允许将相关类的一个实例与同一类的另一个实例(在这里为Edge)进行比较,以进行排序。检出https://docs.oracle.com/javase/7/docs/api/java/lang/Comparable.html
答案 1 :(得分:0)
只要您使用$ jq -n --argjson NODESTOTAL 1 --argjson NODESUSED 2 --argjson NODESFREE 3 --argjson NODESPERCENT 4 -f inode-template.jq
{
"name": "inodeparse",
"metrics": [
{
"event_type": "test",
"provider": "test",
"fileSystem": "FILESYS",
"InodesTotal": 1,
"InodesUsed": 2,
"InodesFree": 3,
"InodeUsedPercent": 4
}
]
}
或<
来比较边,就会调用compareTo方法。这是一种实现Comparable接口的方法。 https://docs.oracle.com/javase/8/docs/api/java/lang/Comparable.html#compareTo-T-