我想创建一个比较三组的直方图。但是,我想用每组中的总计数来标准化每个直方图,而不是计数总数。这是我的代码。
library(ggplot2)
library(reshape2)
# Creates dataset
set.seed(9)
df<- data.frame(values = c(runif(400,20,50),runif(300,40,80),runif(600,0,30)),labels = c(rep("med",400),rep("high",300),rep("low",600)))
levs <- c("low", "med", "high")
df$labels <- factor(df$labels, levels = levs)
ggplot(df, aes(x=values, fill=labels)) +
geom_histogram(aes(y=..density..),
breaks= seq(0, 80, by = 2),
alpha=0.2,
position="identity")
但是,我决定根据我对该密度的手动验证来交叉检查这个密度图。为此,我使用了以下代码:
# Separates the low medium and high groups
df1 <- df[df$labels == "low",]
df2 <- df[df$labels == "med",]
df3 <- df[df$labels == "high",]
# creates histogram for each group that is normalized by the total number of counts
hist_temp <- hist(df1$values, breaks=seq(0,80, by=2))
tdf <- data.frame(hist_temp$breaks[2:length(hist_temp$breaks)],hist_temp$counts)
colnames(tdf) <- c("bins","counts")
tdf$norm <- tdf$counts/(sum(tdf$counts))
low1 <- tdf
hist_temp <- hist(df2$values, breaks=seq(0,80, by=2))
tdf <- data.frame(hist_temp$breaks[2:length(hist_temp$breaks)],hist_temp$counts)
colnames(tdf) <- c("bins","counts")
tdf$norm <- tdf$counts/(sum(tdf$counts))
med1 <- tdf
hist_temp <- hist(df3$values, breaks=seq(0,80, by=2))
tdf <- data.frame(hist_temp$breaks[2:length(hist_temp$breaks)],hist_temp$counts)
colnames(tdf) <- c("bins","counts")
tdf$norm <- tdf$counts/(sum(tdf$counts))
high1 <- tdf
# Combines normalized histograms for each data frame and melts them into a single vector for plotting
Tdata <- data.frame(low1$bins,low1$norm,med1$norm,high1$norm)
colnames(Tdata) <- c("bin","low", "med", "high")
Tdata<- melt(Tdata,id = "bin")
levs <- c("low", "med", "high")
Tdata$variable <- factor(Tdata$variable, levels = levs)
# Plot the data
ggplot(Tdata, aes(group=variable, colour= variable)) +
geom_line(aes(x = bin, y = value))
正如你所看到的那些彼此截然不同,我无法弄清楚原因。两个Y轴应该相同,但事实并非如此。因此,假设我没有做一些愚蠢的数学错误,我相信我希望直方图看起来像线图,我无法找到一种方法来实现这一点。任何帮助表示赞赏,并提前感谢您。
编辑以添加不起作用的更多示例:
我也试过用这个代码使用..count ../(sum(.. count ..))方法:
# Histogram where each histogram is divided by the total count of all groups
ggplot(df, aes(x=values, fill=labels, group=labels)) +
geom_histogram(aes(y=(..count../sum(..count..))),
breaks= seq(0, 80, by = 2),
alpha=0.2,
position="identity")
这只是标准化为所有直方图的总数。这也没有反映我在线图中看到的内容。另外,我已经尝试用.ncount ..替换..count ..(在分子,分母,分子和分母中)并且也不会重新创建折线图中显示的结果。
此外,我尝试使用“position = stack”而不是身份使用以下代码:
ggplot(df, aes(x=values, fill=labels, group=labels)) +
geom_histogram(aes(y=..density..),
breaks= seq(0, 80, by = 2),
alpha=0.2,
position="stack")
这也不反映折线图中显示的值。
进步!使用this post by Joran中概述的方法,我现在可以生成与折线图相同的直方图。以下是代码:
# Plot where each histogram is normalized by its own counts.
ggplot(df,aes(x=values, fill=labels, group=labels)) +
geom_histogram(data=subset(df, labels == 'high'),
aes(y=(..count../sum(..count..))),
breaks= seq(0, 80, by = 2),
alpha = 0.2) +
geom_histogram(data=subset(df, labels == 'med'),
aes(y=(..count../sum(..count..))),
breaks= seq(0, 80, by = 2),
alpha = 0.2) +
geom_histogram(data=subset(df, labels == 'low'),
aes(y=(..count../sum(..count..))),
breaks= seq(0, 80, by = 2),
alpha = 0.2) +
scale_fill_manual(values = c("blue","red","green"))
但是,我仍然无法重新排序数据,因此图例会显示“低”,然后是“med”,然后是“高”,而不是字母顺序。我已经设定了因素的水平。 (见第一段代码)。有什么想法吗?
答案 0 :(得分:0)
要使用每个类别的计数,可能是position="stack"
?
ggplot(df, aes(x=values, fill=labels)) +
geom_histogram(aes(y=..density..),
breaks= seq(0, 80, by = 2),
alpha=0.4,
position="stack") +
geom_density(alpha=.2, position="stack")
它给了我这个distribution,但似乎仍然不同于你的第二个情节。