手动泊松回归

时间:2018-02-22 08:25:52

标签: r regression estimation poisson log-likelihood

我想手工进行泊松回归并定义一个可用于估计任意数量系数的函数。我有两个问题:

首先:我如何得到一个beta矩阵,而不必写每个beta表达。我想以这种方式写lambda lambda = exp(t(x)%*%beta)。我以为我可以做一个for循环并为x a beta中的每一列创建并在矩阵中将它们加起来但我不知道如何编码它。

第二: 由于我不知道怎么写我的贝塔,我试着编写估算6个贝塔的函数。我得到了数据集warpbreaks的结果,但系数与glm不一样,为什么?我也不知道我必须将哪些值粘贴到par,并且如果我不将x和y粘贴到函数中,也不知道为什么optim不起作用。

希望你能帮忙!

    daten <- warpbreaks

LogLike <- function(y,x, par) {
  beta <- par
  # the deterministic part of the model:
  lambda <- exp(beta%*%t(x))
  # and here comes the negative log-likelihood of the whole dataset, given     the
  # model:
  LL <- -sum(dpois(y, lambda, log = TRUE))
  return(LL)
}


PoisMod<-function(formula, data){

  # #formula
  form <- formula(formula)
  # 
  # # dataFrame 
  model <- model.frame(formula, data = data)
  # 
  # # Designmatrix 
  x <- model.matrix(formula,data = data)
  # 
  # # Response Variable
  y <- model.response(model)

  par <- rep(0,ncol(x))

  call <- match.call()

  koef <- optim(par=par,fn=LogLike,x=x,y=y)$par

 estimation <- return(list("coefficients" = koef,"call"= call))

  class(result) <- "PoisMod"
}


print.PoisMod <- function(x, ...) {  

  # Call 
  cat("Call:", "\n")

  # 
  print(x$call)

  # 
  cat("\n")

  # Coefficients  
  cat("Coefficents:", "\n")

  # 
  Koef <- (t(x$coefficients))

  # 
  rownames(Koef) <- ""

  # 
  print(round(Koef, 3))
}

1 个答案:

答案 0 :(得分:2)

这是一个工作示例,基于您的代码..但没有解释变量的平方:

LogLike <- function(y,x, par) {
  beta0 <- par[1]
  beta1 <- par[2]
  beta2 <- par[3]
  beta3 <- par[4]
  # the deterministic part of the model:
  lambda <- exp(beta0*x[,1] + beta1 * x[,2] +beta2*x[,3]+beta3*x[,4])
  # and here comes the negative log-likelihood of the whole dataset, given     the
  # model:
  LL <- -sum(dpois(y, lambda, log = TRUE))
  return(LL)
}


PoisMod<-function(formula, data){

  # # definiere Regressionsformel
  form <- formula(formula)
  # 
  # # dataFrame wird erzeugt 
   model <- model.frame(formula, data = data)
  # 
  # # Designmatrix erzeugt
  x <- model.matrix(formula,data = data)
  # 
  # # Response Variable erzeugt
   y <- model.response(model)

  par <- c(0,0,0,0)
  erg <- list(optim(par=par,fn=LogLike,x=x,y=y)$par)
  return(erg)
}

PoisMod(breaks~wool+tension, as.data.frame(daten))

你可以和glm比较:

glm(breaks~wool+tension, family = "poisson", data = as.data.frame(daten))

编辑:任意数量的解释变量

LogLike <- function(y,x, par) {
  beta <- par
  # the deterministic part of the model:
  lambda <- exp(beta%*%t(x))
  # and here comes the negative log-likelihood of the whole dataset, given     the
  # model:
  LL <- -sum(dpois(y, lambda, log = TRUE))
  return(LL)
}


PoisMod<-function(formula, data){

  # # definiere Regressionsformel
  form <- formula(formula)
  # 
  # # dataFrame wird erzeugt 
   model <- model.frame(formula, data = data)
  # 
  # # Designmatrix erzeugt
  x <- model.matrix(formula,data = data)
  # 
  # # Response Variable erzeugt
   y <- model.response(model)

  par <- rep(0,ncol(x))
  erg <- list(optim(par=par,fn=LogLike,x=x,y=y)$par)
  return(erg)
}

PoisMod(breaks~wool+tension, as.data.frame(daten))
glm(breaks~wool+tension, family = "poisson", data = as.data.frame(daten))