我正在运行this链接中的示例。
我在几次修改后成功运行了代码。这是修改后的代码:
import quandl, math
import numpy as np
import pandas as pd
from sklearn import preprocessing, cross_validation, svm
from sklearn.linear_model import LinearRegression
import matplotlib.pyplot as plt
from matplotlib import style
import datetime
style.use('ggplot')
df = quandl.get("WIKI/GOOGL")
df = df[['Adj. Open', 'Adj. High', 'Adj. Low', 'Adj. Close', 'Adj. Volume']]
df['HL_PCT'] = (df['Adj. High'] - df['Adj. Low']) / df['Adj. Close'] * 100.0
df['PCT_change'] = (df['Adj. Close'] - df['Adj. Open']) / df['Adj. Open'] * 100.0
df = df[['Adj. Close', 'HL_PCT', 'PCT_change', 'Adj. Volume']]
forecast_col = 'Adj. Close'
df.fillna(value=-99999, inplace=True)
forecast_out = int(math.ceil(0.01 * len(df)))
df['label'] = df[forecast_col].shift(-forecast_out)
X = np.array(df.drop(['label'], 1))
X = preprocessing.scale(X)
X_lately = X[-forecast_out:]
X = X[:-forecast_out]
df.dropna(inplace=True)
y = np.array(df['label'])
X_train, X_test, y_train, y_test = cross_validation.train_test_split(X, y, test_size=0.2)
clf = LinearRegression(n_jobs=-1)
clf.fit(X_train, y_train)
confidence = clf.score(X_test, y_test)
forecast_set = clf.predict(X_lately)
df['Forecast'] = np.nan
last_date = df.iloc[-1].name
last_unix = last_date.timestamp()
one_day = 86400
next_unix = last_unix + one_day
for i in forecast_set:
next_date = datetime.datetime.fromtimestamp(next_unix)
next_unix += 86400
df.loc[next_date] = [np.nan for _ in range(len(df.columns)-1)]+[i]
df['Adj. Close'].plot()
df['Forecast'].plot()
plt.legend(loc=4)
plt.xlabel('Date')
plt.ylabel('Price')
plt.show()
但我面临的问题是预测未来的数据帧。这是输出图像:
我要到2017-2018,如图所示。如何进一步进入2019年,2020年或5年后?
答案 0 :(得分:3)
您的代码使用此DataFrame作为X
来生成预测:
df = df[['Adj. Close', 'HL_PCT', 'PCT_change', 'Adj. Volume']]
这意味着如果您想要预测未来五年的价格,您需要这些['Adj. Close', 'HL_PCT', 'PCT_change', 'Adj. Volume']
数据点以便将来的价值进一步预测。
请注意,图片中的预测是根据在此处作为测试集分隔的历史数据创建的:X_lately = X[-forecast_out:]
。因此,它预测的每个点都使用历史数据来预测未来的某些点。
如果您真的想要使用此模型预测未来5年,您首先需要预测/计算所有这些变量:predicted_X = ['Adj. Close', 'HL_PCT', 'PCT_change', 'Adj. Volume']
,并继续在clf.predict(predicted_X)
内部运行一些循环。< / p>
我相信这Machine Learning Course for Trading at Udacity可能对你来说是一个很好的资源,它将为你提供一个更好的框架和思维方式来解决这类问题。
我希望我的回答清楚,对您有帮助,如果不是让我知道,我会澄清或回答其他问题。
按照我的说法更新您的模型:
import quandl
import numpy as np
from sklearn import preprocessing, model_selection
from sklearn.ensemble import RandomForestRegressor
from sklearn.linear_model import LinearRegression
import matplotlib.pyplot as plt
from matplotlib import style
import datetime
style.use('ggplot')
df = quandl.get("WIKI/GOOGL")
df = df[['Adj. Open', 'Adj. High', 'Adj. Low', 'Adj. Close', 'Adj. Volume']]
df['HL_PCT'] = (df['Adj. High'] - df['Adj. Low']) / df['Adj. Close'] * 100.0
df['PCT_change'] = (df['Adj. Close'] - df['Adj. Open']) / df['Adj. Open'] * 100.0
df = df[['Adj. Close', 'HL_PCT', 'PCT_change', 'Adj. Volume']]
forecast_col = 'Adj. Close'
df.fillna(value=-99999, inplace=True)
forecast_out = 1
df['label'] = df[forecast_col].shift(-forecast_out)
X = np.array(df.drop(['label'], 1))
X = preprocessing.scale(X)
X_lately = X[-forecast_out:]
X = X[:-forecast_out]
df.dropna(inplace=True)
y = np.array(df['label'])
X_train, X_test, y_train, y_test = model_selection.train_test_split(X, y, test_size=0.2)
# Instantiate regressors
reg_close = LinearRegression(n_jobs=-1)
reg_close.fit(X_train, y_train)
reg_hl = LinearRegression(n_jobs=-1)
reg_hl.fit(X_train, y_train)
reg_pct = LinearRegression(n_jobs=-1)
reg_pct.fit(X_train, y_train)
reg_vol = LinearRegression(n_jobs=-1)
reg_vol.fit(X_train, y_train)
# Prepare variables for loop
last_close = df['Adj. Close'][-1]
last_date = df.iloc[-1].name.timestamp()
df['Forecast'] = np.nan
predictions_arr = X_lately
for i in range(100):
# Predict next point in time
last_close_prediction = reg_close.predict(predictions_arr)
last_hl_prediction = reg_hl.predict(predictions_arr)
last_pct_prediction = reg_pct.predict(predictions_arr)
last_vol_prediction = reg_vol.predict(predictions_arr)
# Create np.Array of current predictions to serve as input for future predictions
predictions_arr = np.array((last_close_prediction, last_hl_prediction, last_pct_prediction, last_vol_prediction)).T
next_date = datetime.datetime.fromtimestamp(last_date)
last_date += 86400
# Outputs data into DataFrame to enable plotting
df.loc[next_date] = [np.nan, np.nan, np.nan, np.nan, np.nan, float(last_close_prediction)]
df['Adj. Close'].plot()
df['Forecast'].plot()
plt.legend(loc=4)
plt.xlabel('Date')
plt.ylabel('Price')
plt.show()
这个模型不是很有用,因为它很快就会向上爆炸,但是它的实现中有一些有趣且不寻常的东西。
为了更准确地预测未来价格,您还需要实施某种随机游走。
你也可以使用不同的模型而不是LinearRegression
,例如RandomForestRegressor
,这会产生非常不同的结果。
from sklearn.ensemble import RandomForestRegressor
clf_close = RandomForestRegressor(n_jobs=-1)
clf_close.fit(X_train, y_train)
clf_hl = RandomForestRegressor(n_jobs=-1)
clf_hl.fit(X_train, y_train)
clf_pct = RandomForestRegressor(n_jobs=-1)
clf_pct.fit(X_train, y_train)
clf_vol = RandomForestRegressor(n_jobs=-1)
clf_vol.fit(X_train, y_train)
不是预测价格,而是根据某些进入参数和退出参数来预测特定头寸(买入或卖出)是否有利可图。 Udacity course涵盖了这种方法。
随机漫步模型:
import quandl
import numpy as np
import matplotlib.pyplot as plt
from matplotlib import style
import datetime
import random
style.use('ggplot')
df = quandl.get("WIKI/GOOGL")
df = df[['Adj. Close']]
df.dropna(inplace=True)
# Prepare variables for loop
last_close = df['Adj. Close'][-1]
last_date = df.iloc[-1].name.timestamp()
df['Forecast'] = np.nan
for i in range(1000):
# Create np.Array of current predictions to serve as input for future predictions
modifier = random.randint(-100, 105) / 10000 + 1
last_close *= modifier
next_date = datetime.datetime.fromtimestamp(last_date)
last_date += 86400
# Outputs data into DataFrame to enable plotting
df.loc[next_date] = [np.nan, last_close]
df['Adj. Close'].plot()
df['Forecast'].plot()
plt.legend(loc=4)
plt.xlabel('Date')
plt.ylabel('Price')
plt.show()
随机漫步输出图像
答案 1 :(得分:1)
或更好,学习时间序列统计。