当我对ARIMA进行建模并检查MSE时,我遇到了一个奇怪的问题。
这是我尝试过的代码。
from sklearn.metrics import mean_squared_error
import sys
split_point = int(len(value_series) * 0.66)
train, test = value_series.values[0:split_point], value_series.values[split_point:]
history = [float(x) for x in train]
predictions = list()
for t in range(len(test)):
try:
model = ARIMA(history, order=(2,1,2))
model_fit = model.fit(disp=0)
output = model_fit.forecast()
yhat = output[0]
predictions.append(yhat)
obs = test[t]
history.append(obs)
print('# %s predicted=%f, expected=%f' % (t, yhat, obs))
except:
print("Unexpected error:", sys.exc_info()[0])
pass
error = mean_squared_error(test, predictions)
print('Test MSE: %.3f' % error)
我收到的错误是Unexpected error: <class 'numpy.linalg.linalg.LinAlgError'>
行model_fit = model.fit(disp=0)
。
错误从第282位到数据末尾出现,其中列表长度为343,但我仍无法找到任何解决方案和原因。
无论如何,预测和测试的长度输出分别为282和343。我不知道为什么预测无法附加yhat,这意味着无法通过arima.fit.forcast()的输出分配...
+)那个SVD did not converge
错误。
答案 0 :(得分:1)
尝试:
X = value_series.values
size = int(len(X) * 0.66)
trn, tst = X[0:size], X[size:len(X)]
hsty = [x.astype(float) for x in trn]
pred = []
for i in range(len(tst)):
try:
model = ARIMA(hsty, order=(3,1,1))
model_fit = model.fit(disp=0, start_ar_lags = None)
residuals = DataFrame(model_fit.resid)
out = model_fit.forecast()
yhat = out[0]
predictions.append(yhat)
obs = tst[i]
hsty.append(obs)
print('predicted=%f, expected=%f' % (yhat, obs))
except:
pass
if len(tst)>len(pred):
err = mean_squared_error(tst[:len(pred)], pred)
else:
err = mean_squared_error(tst, pred[:len(tst)])
print('Test MSE: %.3f' % err)