我正在尝试实现时间序列模型,并得到一些奇怪的异常,这些异常对我没有任何帮助。我想知道我是在犯错误还是完全可以预期。这是细节...
在训练模型时,我尝试进行网格搜索以找到最佳(p,d,q)设置。这是完整的代码(我将在下面解释发生的事情):
下面的可再现代码本质上是https://machinelearningmastery.com/grid-search-arima-hyperparameters-with-python/的副本,但有一些细微的变化...:
import warnings
from pandas import Series
from statsmodels.tsa.arima_model import ARIMA
from sklearn.metrics import mean_squared_error
# evaluate an ARIMA model for a given order (p,d,q)
def evaluate_arima_model(X, arima_order):
# prepare training dataset
train_size = int(len(X) * 0.66)
train, test = X[0:train_size], X[train_size:]
history = [x for x in train]
# make predictions
predictions = list()
for t in range(len(test)):
model = ARIMA(history, order=arima_order)
model_fit = model.fit(disp=0)
yhat = model_fit.forecast()[0]
predictions.append(yhat)
history.append(test[t])
# calculate out of sample error
error = mean_squared_error(test, predictions)
return error
# evaluate combinations of p, d and q values for an ARIMA model
def evaluate_models(dataset, p_values, d_values, q_values):
dataset = dataset.astype('float64')
best_score, best_cfg = float("inf"), None
for p in p_values:
for d in d_values:
for q in q_values:
order = (p,d,q)
try:
print("Evaluating the settings: ", p, d, q)
mse = evaluate_arima_model(dataset, order)
if mse < best_score:
best_score, best_cfg = mse, order
print('ARIMA%s MSE=%.3f' % (order,mse))
except Exception as exception:
print("Exception occured...", type(exception).__name__, "\n", exception)
print('Best ARIMA%s MSE=%.3f' % (best_cfg, best_score))
# dataset
values = np.array([-1.45, -9.04, -3.64, -10.37, -1.36, -6.83, -6.01, -3.84, -9.92, -5.21,
-8.97, -6.19, -4.12, -11.03, -2.27, -4.07, -5.08, -4.57, -7.87, -2.80,
-4.29, -4.19, -3.76, -22.54, -5.87, -6.39, -4.19, -2.63, -8.70, -3.52,
-5.76, -1.41, -6.94, -12.95, -8.64, -7.21, -4.05, -3.01])
# evaluate parameters
p_values = [7, 8, 9, 10]
d_values = range(0, 3)
q_values = range(0, 3)
warnings.filterwarnings("ignore")
evaluate_models(values, p_values, d_values, q_values)
这是输出(不是所有内容,但它提供了足够的信息):
Evaluating the settings: 7 0 0
Exception occured... LinAlgError
SVD did not converge
Evaluating the settings: 7 0 1
Exception occured... LinAlgError
SVD did not converge
Evaluating the settings: 7 0 2
Exception occured... ValueError
The computed initial AR coefficients are not stationary
You should induce stationarity, choose a different model order, or you can
pass your own start_params.
Evaluating the settings: 7 1 0
Exception occured... LinAlgError
SVD did not converge
Evaluating the settings: 7 1 1
Exception occured... ValueError
The computed initial AR coefficients are not stationary
You should induce stationarity, choose a different model order, or you can
pass your own start_params.
Evaluating the settings: 7 1 2
Exception occured... ValueError
The computed initial AR coefficients are not stationary
You should induce stationarity, choose a different model order, or you can
pass your own start_params.
Evaluating the settings: 7 2 0
Exception occured... LinAlgError
SVD did not converge
Evaluating the settings: 7 2 1
Exception occured... ValueError
The computed initial AR coefficients are not stationary
You should induce stationarity, choose a different model order, or you can
pass your own start_params.
Evaluating the settings: 7 2 2
Exception occured... ValueError
The computed initial AR coefficients are not stationary
You should induce stationarity, choose a different model order, or you can
pass your own start_params.
代码只是简单地尝试所有不同的给定设置,训练模型,为每个给定设置计算MSE(均方误差),然后选择最佳设置(基于最小MSE)。
但是在培训过程中,代码不断抛出LinAlgError
和ValueError
异常,这对我没有任何帮助。
据我所知,当抛出这些异常时,代码并不是真正地在真正训练某些设置,然后跳转到将要尝试的下一个设置。
为什么我会看到这些例外? 他们可以被忽略吗? 我需要怎么做才能解决?
答案 0 :(得分:1)
首先,要回答您的特定问题:我认为“ SVD未收敛”是Statsmodels的ARIMA模型中的错误。如今,SARIMAX模型得到了更好的支持(并且ARIMA模型所做的一切以及更多功能都得到了支持),所以我建议改用它。为此,将模型创建替换为:
model = sm.tsa.SARIMAX(history, trend='c', order=arima_order, enforce_stationarity=False, enforce_invertibility=False)
话虽如此,我认为鉴于时间序列和所要尝试的规范,您仍然不太可能获得良好的结果。
尤其是您的时间序列非常短,并且您只考虑了非常长的自回归滞后长度(p> 6)。很难估计许多参数具有很少的数据点,尤其是当您还具有积分(d = 1或d = 2)并且还添加移动平均成分时。我建议您重新评估您正在考虑的模型。