我正在使用子集数据集进行逻辑回归。在拆分数据集并拟合模型后,我收到以下错误消息:
/Users/Eddie/anaconda/lib/python3.4/site-packages/sklearn/utils/validation.py:526: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
y = column_or_1d(y, warn=True)
所以我使用target_newrdn = target_newrdn.ravel()
来修改我的目标变量,但它给了我这个:
AttributeError: 'DataFrame' object has no attribute 'ravel'
我想知道问题是什么,我该如何解决?有人可以帮忙吗?
我的代码:
from sklearn.datasets import fetch_covtype
import numpy as np
import pandas as pd
from sklearn.utils import shuffle
from sklearn.model_selection import train_test_split
cov = fetch_covtype()
cov_data = pd.DataFrame(cov.data)
cov_target = pd.DataFrame(cov.target)
data_newrdn = cov_data.head(n=10000)
target_newrdn = cov_target.head(n=10000)
target_newrdn = target_newrdn.ravel() ## I thought this could fix it??
X_train2, X_test2, y_train2, y_test2 = train_test_split(data_newrdn,
target_newrdn, random_state=42)
scaler.fit(X_train2)
X_train_scaled2 = scaler.transform(X_train2)
# Logistic Regression
param_grid = {'C': [0.001, 0.01, 0.1, 1, 10, 100, 1000]}
print(param_grid)
grid = GridSearchCV(LogisticRegression(), param_grid, cv=kfold)
grid.fit(X_train_scaled2, y_train2)
print("Best cross-validation score w/ kfold:
{:.2f}".format(grid.best_score_))
print("Best parameters: ", grid.best_params_)
答案 0 :(得分:7)
显然,数据帧没有ravel
功能。尝试:
target_newrdn.values.ravel()
target_newrdn.values
返回一个numpy ndarray,然后对其执行ravel
。注意这会返回一个展平的numpy数组。您可能需要转换回数据帧。
但我认为你需要flatten()
,因为它返回一个副本,所以如果你修改ravel返回的数组,它就不会修改原始数组中的条目。