我在YouTube视频中编写了以下代码,该视频是一个简单的遗传算法教程。我试图学习的东西。
from fuzzywuzzy import fuzz
import random
import string
class Agent:
def __init__(self,length): #Initialization by using a constructor
self.string = ''.join(random.choice(string.ascii_letters)for _ in range(length)) # Using random letters to make the initial population
self.fitness = -1
def __str__(self): # Special method to print string and fitness value
return 'String: ' + str(self.string) + ' Fitness: ' + str(self.fitness)
in_str = None
in_str_len = None
population = 20 #20 agents
generations = 1000
def ga(): # For evolving
agents = init_agents(population,in_str_len) # Returns a list of initialized agents
for gen in range(generations):
print('Generation: ' + str(generations))
agents = fitness(agents)
agents = selection(agents)
agents = crossover(agents)
agents = mutation(agents)
if any(agent.fitness >= 90 for agent in agents): # Ends program if agent reaches fitness of 90
print('Threshold reached')
exit()
def init_agents(population,len):
return[Agent(len) for _ in range(population)]
def fitness(agents):
for agent in agents:
agent.fitness = fuzz.ratio(agent.string, in_str) # Gives fuzzy value when comparing agent string to input string
return agent
def selection(agents):
agents = sorted(agents, key=lambda agents: agents.fitness, reverse=True) # Orders agent fitness from largest to smallest because reverse is given as TRUE
print ('\n'.join(map(str,agents)))
agents = agents[:int(0.2 * len(agents))]
return agents
def crossover(agents):
offspring = []
for _ in range(int((population - len(agents))) / 2):
parent1 = random.choice(agents)
parent2 = random.choice(agents)
child1 = Agent(in_str_len)
child2 = Agent(in_str_len)
split = random.randit(0, in_str_len)
child1.string = parent1.string[0:split] + parent2.string[split:in_str_len]
child2.string = parent2.string[0:split] + parent1.string[split:in_str_len]
offspring.append(child1)
offspring.append(child2)
agents.extend(offspring)
return agents
def mutation(agents):
for agent in agents:
for idx, param in enumerate(agent.string):
if random.uniform[0.0, 1.0] <= 1.0:
agent.string = agent.string[0:idx] + random.choice(string.ascii_letters) + agent.string[idx+1, in_str_len] # Insert randomly chosen letter for mutation
return agents
if __name__ == '__main__':
in_str = 'TargetWord'
in_str_len = len(in_str)
ga()
当我尝试运行程序时出现以下错误。尝试在谷歌和其他论坛上搜索,但没有找到任何可以消除错误的内容。
File "C:/Users/admin/simple_ga.py", line 69, in <module>
ga()
File "C:/Users/admin/simple_ga.py", line 23, in ga
agents = selection(agents)
File "C:/Users/admin/simple_ga.py", line 39, in selection
agents = sorted(agents, key=lambda agents: agents.fitness, reverse=True) # Orders agent fitness from largest to smallest because reverse is given as TRUE
TypeError: 'Agent' object is not iterable
提到错误的原因是什么?
答案 0 :(得分:2)
您的fitness
函数只返回一个Agent
,而不是列表。您将该单个结果传递给需要列表的selection
函数。