我正在使用带有意大利NER模型的Spacy 2.0.6。 我想在该模型中添加样本以提高准确性。什么是正确的方法?
一开始我用这段代码训练了模型:
with nlp.disable_pipes(*other_pipes): # only train NER
optimizer = nlp.begin_training()
for itn in range(epochs):
random.shuffle(train)
losses = {}
for batch in minibatch(train, size=32):
docs, golds = zip(*batch)
nlp.update(docs, golds, drop=.3, sgd=optimizer, losses=losses)
不幸的是,它不适用于新样品。
我在optimizer = nlp.begin_training()
行收到错误。
optimizer = nlp.begin_training()
File "/home/damiano/lavoro/python/parser/.env/lib/python3.5/site-packages/spacy/language.py", line 456, in begin_training
sgd=self._optimizer)
File "nn_parser.pyx", line 843, in spacy.syntax.nn_parser.Parser.begin_training
KeyError: 'token_vector_width'
我如何“恢复”NER模型的训练?