我使用本地[8]配置运行spark。输入是一个有8个代理的kafka流。但正如在系统监视器中看到的那样,它并不足够并行,似乎只有一个节点正在运行。 kafka流媒体的输入大约为1.6GB,因此处理速度要快得多。
卡夫卡制片人:
import java.io.{BufferedReader, FileReader}
import java.util
import java.util.{Collections, Properties}
import logparser.LogEvent
import org.apache.hadoop.conf.Configuration
import org.apache.kafka.clients.producer.{KafkaProducer, Producer, ProducerRecord}
import org.apache.kafka.common.serialization.StringDeserializer
object sparkStreaming{
private val NUMBER_OF_LINES = 100000000
val brokers ="localhost:9092,localhost:9093,localhost:9094,localhost:9095,localhost:9096,localhost:9097,localhost:9098,localhost:9099"
val topicName = "log-1"
val fileName = "data/HDFS.log"
val producer = getProducer()
// no hdfs , read from text file.
def produce(): Unit = {
try { //1. Get the instance of Configuration
val configuration = new Configuration
val fr = new FileReader(fileName)
val br = new BufferedReader(fr)
var line = ""
line = br.readLine
var count = 1
//while (line != null){
while ( {
line != null && count < NUMBER_OF_LINES
}) {
System.out.println("Sending batch " + count + " " + line)
producer.send(new ProducerRecord[String, LogEvent](topicName, new LogEvent(count,line,System.currentTimeMillis())))
line = br.readLine
count = count + 1
}
producer.close()
System.out.println("Producer exited successfully for " + fileName)
} catch {
case e: Exception =>
System.out.println("Exception while producing for " + fileName)
System.out.println(e)
}
}
private def getProducer() : KafkaProducer[String,LogEvent] = { // create instance for properties to access producer configs
val props = new Properties
//Assign localhost id
props.put("bootstrap.servers", brokers)
props.put("auto.create.topics.enable", "true")
//Set acknowledgements for producer requests.
props.put("acks", "all")
//If the request fails, the producer can automatically retry,
props.put("retries", "100")
//Specify buffer size in config
props.put("batch.size", "16384")
//Reduce the no of requests less than 0
props.put("linger.ms", "1")
//The buffer.memory controls the total amount of memory available to the producer for buffering.
props.put("buffer.memory", "33554432")
props.put("key.serializer", "org.apache.kafka.common.serialization.StringSerializer")
props.put("value.serializer", "logparser.LogEventSerializer")
props.put("topic.metadata.refresh.interval.ms", "1")
val producer = new KafkaProducer[String, LogEvent](props)
producer
}
def sendBackToKafka(logEvent: LogEvent): Unit ={
producer.send(new ProducerRecord[String, LogEvent] ("times",logEvent))
}
def main (args: Array[String]): Unit = {
println("Starting to produce");
this.produce();
}
}
消费者:
package logparser
import java.io._
import java.util.Properties
import kafka.serializer.StringDecoder
import org.apache.kafka.clients.producer.{KafkaProducer, ProducerRecord}
import org.apache.kafka.common.serialization.StringDeserializer
import org.apache.spark.SparkConf
import org.apache.spark.rdd.RDD
import org.apache.spark.streaming._
import org.apache.spark.streaming.kafka010._
object consumer {
var tFromKafkaToSpark: Long = 0
var tParsing : Long = 0
val startTime = System.currentTimeMillis()
val CPUNumber = 8
val pw = new PrintWriter(new FileOutputStream("data/Streaming"+CPUNumber+"config2x.txt",false))
pw.write("Writing Started")
def printstarttime(): Unit ={
pw.print("StartTime : " + System.currentTimeMillis())
}
def printendtime(): Unit ={
pw.print("EndTime : " + System.currentTimeMillis());
}
val producer = getProducer()
private def getProducer() : KafkaProducer[String,TimeList] = { // create instance for properties to access producer configs
val props = new Properties
val brokers ="localhost:9090,"
//Assign localhost id
props.put("bootstrap.servers", brokers)
props.put("auto.create.topics.enable", "true")
//Set acknowledgements for producer requests.
props.put("acks", "all")
//If the request fails, the producer can automatically retry,
props.put("retries", "100")
//Specify buffer size in config
props.put("batch.size", "16384")
//Reduce the no of requests less than 0
props.put("linger.ms", "1")
//The buffer.memory controls the total amount of memory available to the producer for buffering.
props.put("buffer.memory", "33554432")
props.put("key.serializer", "org.apache.kafka.common.serialization.StringSerializer")
props.put("value.serializer", "logparser.TimeListSerializer")
props.put("topic.metadata.refresh.interval.ms", "1")
val producer = new KafkaProducer[String, TimeList](props)
producer
}
def sendBackToKafka(timeList: TimeList): Unit ={
producer.send(new ProducerRecord[String, TimeList]("times",timeList))
}
def main(args:Array [String]){
val topics = "log-1"
//val Array(brokers, ) = Array("localhost:9092","log-1")
val brokers = "localhost:9092"
// Create context with 2 second batch interval
val sparkConf = new SparkConf().setAppName("DirectKafkaWordCount").setMaster("local[" + CPUNumber + "]")
val ssc = new StreamingContext(sparkConf, Seconds(1))
// Create direct kafka stream with brokers and topics
val topicsSet = topics.split(",").toSet
var kafkaParams = Map[String, AnyRef]("metadata.broker.list" -> brokers)
kafkaParams = kafkaParams + ("bootstrap.servers" -> "localhost:9092,localhost:9093,localhost:9094,localhost:9095,localhost:9096,localhost:9097,localhost:9098,localhost:9099")
kafkaParams = kafkaParams + ("auto.offset.reset"-> "latest")
kafkaParams = kafkaParams + ("group.id" -> "test-consumer-group")
kafkaParams = kafkaParams + ("key.deserializer" -> classOf[StringDeserializer])
kafkaParams = kafkaParams + ("value.deserializer"-> "logparser.LogEventDeserializer")
//kafkaParams.put("zookeeper.connect", "192.168.101.165:2181");
kafkaParams = kafkaParams + ("enable.auto.commit"-> "true")
kafkaParams = kafkaParams + ("auto.commit.interval.ms"-> "1000")
kafkaParams = kafkaParams + ("session.timeout.ms"-> "20000")
kafkaParams = kafkaParams + ("metadata.max.age.ms"-> "1000")
val messages = KafkaUtils.createDirectStream[String, LogEvent](
ssc,
LocationStrategies.PreferConsistent,
ConsumerStrategies.Subscribe[String, LogEvent](topicsSet, kafkaParams))
var started = false
val lines = messages.map(_.value)
val lineswTime = lines.map(event =>
{
event.addNextEventTime(System.currentTimeMillis())
event
}
)
lineswTime.foreachRDD(a => a.foreach(e => println(e.getTimeList)))
val logLines = lineswTime.map(
(event) => {
//println(event.getLogline.stringMessages.toString)
event.setLogLine(event.getContent)
println("Got event with id = " + event.getId)
event.addNextEventTime(System.currentTimeMillis())
println(event.getLogline.stringMessages.toString)
event
}
)
//logLines.foreachRDD(a => a.foreach(e => println(e.getTimeList + e.getLogline.stringMessages.toString)))
val x = logLines.map(le => {
le.addNextEventTime(System.currentTimeMillis())
sendBackToKafka(new TimeList(le.getTimeList))
le
})
x.foreachRDD(a => a.foreach(e => println(e.getTimeList)))
//logLines.map(ll => ll.addNextEventTime(System.currentTimeMillis()))
println("--------------***///*****-------------------")
//logLines.print(10)
/*
val words = lines.flatMap(_.split(" "))
val wordCounts = words.map(x => (x, 1L)).reduceByKey(_ + _)
wordCounts.print()
*/
// Start the computation
ssc.start()
ssc.awaitTermination()
ssc.stop(false)
pw.close()
} }
答案 0 :(得分:3)
您的问题陈述中缺少一条信息:您的输入主题log-1
有多少个分区?
我的猜测是这样的主题只有不到8个分区。
Spark Streaming的并行性(在Kafka源的情况下)与它消耗的总Kafka分区的数量(模数重新分区)相关联(即RDD和分区取自Kafka分区)。 / p>
如果我怀疑你的输入主题只有几个分区,那么对于每个微批处理,Spark Streaming将只计算相同数量的节点。所有其他节点都将闲置。
您看到所有节点几乎以循环方式工作的事实是由于Spark并不总是选择相同的节点来处理同一分区的数据,但实际上它实际上是混合起来的。 / p>
为了更好地了解发生了什么,我需要从Spark UI Streaming页面查看一些统计信息。
鉴于您目前提供的信息,Kafka分区不足是我最好的选择。
答案 1 :(得分:0)
Kafka消费的一切都受到主题分区数量的限制。每个分区一个消费者。你有多少钱?
虽然Spark可以重新分配工作,但不建议这样做,因为您可能花费更多时间在执行程序之间交换信息而不是实际处理它。