二进制搜索树插入功能不更新二叉搜索树

时间:2018-02-14 20:08:42

标签: c binary-search-tree

我正在尝试将文本文件转换为二叉搜索树。这是我的函数,它接受文本文件并将其传递给bst_insert:

void bst_insert(bst *tree, void *item, int (*compare)(void *, void *))
{
    if (tree)
        tree->root = bstnode_insert(tree->root, item, compare);
}



bstnode* bstnode_insert(bstnode *node, void *item,
                        int (*compare)(void *, void *))
{
    bstnode *new_node = (bstnode*)malloc(sizeof(bstnode));
    new_node->item = item;
    new_node->rsub = NULL;
    new_node->lsub = NULL;

    if (!node) {
        node = (bstnode*)malloc(sizeof(bstnode));
        node->item = item;
        node->rsub = NULL;
        node->lsub = NULL;
        return node;
    }
    wordcount *w1 = (wordcount*) item;
    wordcount *w2 = (wordcount*)node->item;
    int comp = compare(w1->word, w2->word);

    if (comp < 0) {
        if (node->lsub)
            node->lsub = bstnode_insert(node->lsub, item, compare);
        else {
            node->lsub = new_node;
        }
    }
    else if (comp > 0) {
        if (node->rsub)
            node->rsub = bstnode_insert(node->rsub, item, compare);
        else {
            node->rsub = new_node;
        }
    } else {
       bstnode_insert(node->rsub, item, compare);
    }
    return node;
}

这是bst_insert,然后调用bst_insert:

{{1}}

由于某种原因,我的函数最终只会创建树的第一个节点,我不知道为什么。我希望它能够制作整个节点。

1 个答案:

答案 0 :(得分:0)

这是(最小)二叉树实现:

首先是创建树的函数:

Tree_t* create_dynamic_tree()
{
    Tree_t* my_tree = NULL;
    my_tree = (Tree_t*) malloc(sizeof(Tree_t));
    my_tree->number_of_nodes = 0;
    my_tree->root = NULL;
    my_tree->max_key = 0;
    return my_tree;
}

树在哪里

typedef struct Tree_t
{
    int number_of_nodes;
    Node_t* root;
}Tree_t;

,节点是:

struct Node_t
{
    void* data;
    int key;
    Node_t* left_child;
    Node_t* right_child;
};

现在你需要一个添加数据的功能,应该是这样的:

int data_add(Tree_t* tree_dest , void* data , int* data_key)
{
    if(tree_dest == NULL || data == NULL )
    {
        return -1;
    }
    int key = 0;
    Node_t* parent;
    key = *data_key;
    if(key<0)
    {
        return -2;
    }
    if(tree_dest->number_of_nodes == 0)
    {
        Node_t* temp = NULL;
        temp = (Node_t*) malloc(sizeof(Node_t));
        temp->data = data;
        temp->key = key;
        temp->left_child = NULL;
        temp->right_child = NULL;

        tree_dest->number_of_nodes++;
        tree_dest->root = temp;
        return key;
    }
    exists_t existance = not_exist;
    exists_t* exist_ptr = NULL;
    exist_ptr = &existance;

    if(is_key_exists(tree_dest , &parent ,key , exist_ptr) == 0)
    {
        if(existance == exist)
        {
            return -1;
        }
        else
        {
            if(insert_node(tree_dest , &parent ,data , key) == -1)
            {
                return -1;
            }
        }
    }
    if(tree_dest->max_key < key)
    {
        tree_dest->max_key = key;
    }
    //free(parent);
    return key;
}

以上功能使用以下功能:

- is_key_exists()

int is_key_exists(Tree_t* the_tree ,  Node_t** parent , int key , exists_t* exist_t)
{
    if(the_tree == NULL )
    {
        return -1;
    }
    Node_t* root = the_tree->root;
    search_node_parent(the_tree , &root , parent , key);
    if(root != NULL)
    {
        *exist_t = exist;
        return 0;
    }
    else
    {
        *exist_t = not_exist;
        return 0;
    }
}

- insert_node()

int insert_node(Tree_t* tree_dest , Node_t** parent ,void* data , int key)
{
    if(tree_dest == NULL || data == NULL || parent == NULL )
    {
        return -1;
    }
    Node_t* new_node = NULL;
    new_node = (Node_t*) malloc(sizeof(Node_t));
    new_node->data = data;
    new_node->key = key;
    new_node->left_child = NULL;
    new_node->right_child = NULL;

    if(key < (*parent)->key )
    {
        (*parent)->left_child = new_node;
    }
    if(key > (*parent)->key)
    {
        (*parent)->right_child = new_node;
    }
    tree_dest->number_of_nodes++;
    if(tree_dest->max_key < key)
    {
        tree_dest->max_key = key;
    }
    return 0;
}

我在这里做的是获取void * data,指向你需要的所有东西(你在这里使用的char *或结构/联合),将数据封装在节点内并使用id将其添加到树中(在您的情况下可能是文件中的行数)。 我希望这可以帮助您或将来需要(基本)树实现的任何其他人。 这就是插入所需的全部内容。如果你想要一个平衡的树,那么下一步就是重新散列。

谢谢。