我有一个pandas数据框,看起来如下:
chrom start end probability read
0 chr1 1 10 0.99 read1
1 chr1 5 25 0.99 read2
2 chr1 15 25 0.99 read2
3 chr1 30 40 0.75 read4
我想做的是合并具有相同染色体(chrom列)的区间,其坐标(开始,结束)重叠。在某些情况下,如果多个区间相互重叠,则会有合并的区间,即使它们不重叠。请参阅上述示例中的第0行和第2行以及下面合并的输出
对于那些合并的元素,我想总结它们的概率(概率列)并计算“读取”列中的唯一元素。
使用上面的示例会导致以下输出,请注意行0,1和2已合并:
chrom start end probability read
0 chr1 1 20 2.97 2
1 chr1 30 40 0.75 1
到目前为止,我一直在使用pybedtools merge进行此操作,但事实证明这样做的速度是数百万次(我的情况)。因此,我正在寻找其他选择,熊猫是显而易见的。我知道,对于pandas groupby ,可以对要合并的列应用不同的操作,如 nunique 和 sum ,这些是我需要申请。尽管如此,pandas groupby仅将数据与精确的'chrom','start'和'end'坐标合并。
我的问题是我不知道如何使用pandas根据坐标(chrom,start,end)合并我的行,然后应用 sum 和 nunique 操作。
有这么快的方法吗?
谢谢!
PS:正如我在问题上所说,我这样做了数百万次,所以速度是个大问题。因此,我无法使用pybedtools或纯python,这对我的目标来说太慢了。谢谢!
答案 0 :(得分:2)
如@root所建议,接受的答案无法推广到类似情况。例如如果我们在问题的示例中添加额外的一行,范围为2-3,则为:
df = pd.DataFrame({'chrom': ['chr1','chr1','chr1','chr1','chr1'],
'start': [1, 2, 5, 15, 30],
'end': [10, 3, 20, 25, 40],
'probability': [0.99, 0.99, 0.99, 0.99, 0.75],
'read': ['read1','read2','read2','read2','read4']})
...建议的聚合函数输出以下数据帧。请注意,4的范围是1-10,但不再捕获。 1-10、2-3、5-20和15-25的范围都重叠,因此应归为一类。
一种解决方案是以下方法(使用@ W-B建议的聚合函数和组合间隔posted by @CentAu的方法)。
# Union intervals by @CentAu
from sympy import Interval, Union
def union(data):
""" Union of a list of intervals e.g. [(1,2),(3,4)] """
intervals = [Interval(begin, end) for (begin, end) in data]
u = Union(*intervals)
return [u] if isinstance(u, Interval) \
else list(u.args)
# Get intervals for rows
def f(x,position=None):
"""
Returns an interval for the row. The start and stop position indicate the minimum
and maximum position of all overlapping ranges within the group.
Args:
position (str, optional): Returns an integer indicating start or stop position.
"""
intervals = union(x)
if position and position.lower() == 'start':
group = x.str[0].apply(lambda y: [l.start for g,l in enumerate(intervals) if l.contains(y)][0])
elif position and position.lower() == 'end':
group = x.str[0].apply(lambda y: [l.end for g,l in enumerate(intervals) if l.contains(y)][0])
else:
group = x.str[0].apply(lambda y: [l for g,l in enumerate(intervals) if l.contains(y)][0])
return group
# Combine start and end into a single column
df['start_end'] = df[['start', 'end']].apply(list, axis=1)
# Assign each row to an interval and add start/end columns
df['start_interval'] = df[['chrom',
'start_end']].groupby(['chrom']).transform(f,'start')
df['end_interval'] = df[['chrom',
'start_end']].groupby(['chrom']).transform(f,'end')
# Aggregate rows, using approach by @W-B
df.groupby(['chrom','start_interval','end_interval']).agg({'probability':'sum',
'read':'nunique'}).reset_index()
...将输出以下数据帧。第一行的总和为3.96,因为我们要合并四行而不是三行。
虽然这种方法应该更通用,但并不一定很快!希望其他人可以提出更快的替代方案。
答案 1 :(得分:1)
IIUC
df.groupby((df.end.shift()-df.start).lt(0).cumsum()).agg({'chrom':'first','start':'first','end':'last','probability':'sum','read':'nunique'})
Out[417]:
chrom start end probability read
0 chr1 1 20 2.97 2
1 chr1 30 40 0.75 1
更多信息创建组密钥
(df.end.shift()-df.start).lt(0).cumsum()
Out[418]:
0 0
1 0
2 0
3 1
dtype: int32
答案 2 :(得分:1)
以下是使用pyranges和熊猫的答案。改进之处在于,它可以真正快速地进行合并,即使在单核模式下也易于并行化并且超级快速。
设置:
import pandas as pd
import pyranges as pr
import numpy as np
rows = int(1e7)
gr = pr.random(rows)
gr.probability = np.random.rand(rows)
gr.read = np.arange(rows)
print(gr)
# +--------------+-----------+-----------+--------------+----------------------+-----------+
# | Chromosome | Start | End | Strand | probability | read |
# | (category) | (int32) | (int32) | (category) | (float64) | (int64) |
# |--------------+-----------+-----------+--------------+----------------------+-----------|
# | chr1 | 149953099 | 149953199 | + | 0.7536048547309669 | 0 |
# | chr1 | 184344435 | 184344535 | + | 0.9358130407479777 | 1 |
# | chr1 | 238639916 | 238640016 | + | 0.024212603310159064 | 2 |
# | chr1 | 95180042 | 95180142 | + | 0.027139751993808026 | 3 |
# | ... | ... | ... | ... | ... | ... |
# | chrY | 34355323 | 34355423 | - | 0.8843190383030953 | 999996 |
# | chrY | 1818049 | 1818149 | - | 0.23138017743097572 | 999997 |
# | chrY | 10101456 | 10101556 | - | 0.3007915302642412 | 999998 |
# | chrY | 355910 | 356010 | - | 0.03694752911338561 | 999999 |
# +--------------+-----------+-----------+--------------+----------------------+-----------+
# Stranded PyRanges object has 1,000,000 rows and 6 columns from 25 chromosomes.
# For printing, the PyRanges was sorted on Chromosome and Strand.
执行:
def praderas(df):
grpby = df.groupby("Cluster")
prob = grpby.probability.sum()
prob.name = "ProbSum"
n = grpby.read.count()
n.name = "Count"
return df.merge(prob, on="Cluster").merge(n, on="Cluster")
%time result = gr.cluster().apply(praderas)
# 11.4s !
result[result.Count > 2]
# +--------------+-----------+-----------+--------------+----------------------+-----------+-----------+--------------------+-----------+
# | Chromosome | Start | End | Strand | probability | read | Cluster | ProbSum | Count |
# | (category) | (int32) | (int32) | (category) | (float64) | (int64) | (int32) | (float64) | (int64) |
# |--------------+-----------+-----------+--------------+----------------------+-----------+-----------+--------------------+-----------|
# | chr1 | 52952 | 53052 | + | 0.7411051557901921 | 59695 | 70 | 2.2131010082513884 | 3 |
# | chr1 | 52959 | 53059 | + | 0.9979036360671423 | 356518 | 70 | 2.2131010082513884 | 3 |
# | chr1 | 53029 | 53129 | + | 0.47409221639405397 | 104776 | 70 | 2.2131010082513884 | 3 |
# | chr1 | 64657 | 64757 | + | 0.32465233067499366 | 386140 | 88 | 1.3880589602361695 | 3 |
# | ... | ... | ... | ... | ... | ... | ... | ... | ... |
# | chrY | 59356855 | 59356955 | - | 0.3877207561218887 | 9966373 | 8502533 | 1.182153891322546 | 4 |
# | chrY | 59356865 | 59356965 | - | 0.4007557656399032 | 9907364 | 8502533 | 1.182153891322546 | 4 |
# | chrY | 59356932 | 59357032 | - | 0.33799123310907786 | 9978653 | 8502533 | 1.182153891322546 | 4 |
# | chrY | 59356980 | 59357080 | - | 0.055686136451676305 | 9994845 | 8502533 | 1.182153891322546 | 4 |
# +--------------+-----------+-----------+--------------+----------------------+-----------+-----------+--------------------+-----------+
# Stranded PyRanges object has 606,212 rows and 9 columns from 24 chromosomes.
# For printing, the PyRanges was sorted on Chromosome and Strand.