合并带有时间戳和间隔的数据帧

时间:2019-01-29 09:43:59

标签: python pandas datetime merge timestamp

我有两个数据框。

df1包含数字和时间戳。这是一个很大的集合。

df1.head()
Out[292]: 
2016-08-31 08:09:00     1.0
2016-08-31 08:11:00     7.0
2016-08-31 08:14:00    90.0

df2包含间隔

d2.head()
Out[292]:        
   start                 stop                         C
2016-08-31 08:09:00     2016-08-31 08:12:00         'a'
2016-08-31 08:13:00     2016-08-31 08:20:00         'b'
2016-08-31 08:20:00     2016-08-31 08:45:00         'c'

我想向C添加一个新列df1,以使C的值对应于df2中包含索引的时间间隔的值的df1

预期结果

 df1.head()
    Out[292]:                      C
    2016-08-31 08:09:00     1.0   'a'
    2016-08-31 08:11:00     7.0   'a'
    2016-08-31 08:14:00    90.0   'b'

到目前为止,我已经尝试过:

 df1.loc[:,'C']=df1.index.map(lambda i:df2[np.logical_and(i>df2.starti<df2.stop)].C)

但是它效率极低,并且在某些情况下会崩溃,因为某些情况下df2的间隔列表中缺少索引值。

如何有效地做到这一点?

1 个答案:

答案 0 :(得分:3)

首先由IntervalIndex.from_arrays创建IntervalIndex

s = pd.IntervalIndex.from_arrays(df2['start'], df2['stop'], 'both')
print (s)
IntervalIndex([[2016-08-31 08:09:00, 2016-08-31 08:12:00], 
               [2016-08-31 08:13:00, 2016-08-31 08:20:00],
               [2016-08-31 08:20:00, 2016-08-31 08:45:00]],
              closed='both',
              dtype='interval[datetime64[ns]]')

然后通过新的IntervalIndex set_index设置为values创建的数组的新列:

df1['C'] = df2.set_index(s).loc[df1.index, 'C'].values
print (df1)
                        A  C
2016-08-31 08:09:00   1.0  a
2016-08-31 08:11:00   7.0  a
2016-08-31 08:14:00  90.0  b

编辑:

s = pd.IntervalIndex.from_arrays(df2['start'].astype(np.int64), 
                                 df2['stop'].astype(np.int64), 'both')
print (s)
IntervalIndex([[1472630940000000000, 1472631120000000000], 
               [1472631180000000000, 1472631600000000000], 
               [1472631600000000000, 1472633100000000000]],
              closed='both',
              dtype='interval[int64]')

df1['C'] = df2.set_index(s).loc[df1.index.astype(np.int64), 'C'].values
print (df1)
                        A  C
2016-08-31 08:09:00   1.0  a
2016-08-31 08:11:00   7.0  a
2016-08-31 08:14:00  90.0  b