我有一个数据框。它是一个中间csv文件。 它有以下数据。
sv1 val1 sv2 val2 sv3 val3
2 0.2 4 0.6 8 0.3
2 0.1 6 0.1 8 0.11
2 0.12 6 -0.3 8 0.2
5 0 4 1.6 8 0.7
2 0.34 6 2.3 8 0.12
... .... ... .... ... .....
目标:如果sv1,sv2,sv3不包含5,则添加val1 + val2 + val3。 如果任何svs列(比如sv1)包含5,那么添加将是val2 + val3
# Attempt
import pandas as pd
names=['sv1','sv2','sv3','val1','val2','val3']
df=pd.read_csv('Myfile.csv',names=names)
discard_id=int(raw_input('enter the number to discard')
add_result=df.loc[['sv1','sv2','sv3']!=discard_id]
.....
perform addition
答案 0 :(得分:2)
首先将所有值按discard_id
进行比较,然后获得any
每行至少一个True
。然后按sum
列subset
列,并按numpy.where
添加到新列:
discard_id = 5
m = (df[['sv1','sv2','sv3']] == discard_id).any(axis=1)
sum1 = df[['val1','val2','val3']].sum(axis=1)
sum2 = df[['val2','val3']].sum(axis=1)
df['new'] = np.where(m, sum2, sum1)
print (df)
sv1 val1 sv2 val2 sv3 val3 new
0 2 0.20 4 0.6 8 0.30 1.10
1 2 0.10 6 0.1 8 0.11 0.31
2 2 0.12 6 -0.3 8 0.20 0.02
3 5 0.00 4 1.6 8 0.70 2.30
4 2 0.34 6 2.3 8 0.12 2.76
<强>详细强>:
print (m)
0 False
1 False
2 False
3 True
4 False
dtype: bool
print (sum1)
0 1.10
1 0.31
2 0.02
3 2.30
4 2.76
dtype: float64
print (sum2)
0 0.90
1 0.21
2 -0.10
3 2.30
4 2.42
dtype: float64
<强>计时强>:
df = pd.concat([df] * 1000, ignore_index=True)
In [312]: %%timeit
...: m = (df[['sv1','sv2','sv3']] == discard_id).any(axis=1)
...: sum1 = df[['val1','val2','val3']].sum(axis=1)
...: sum2 = df[['val2','val3']].sum(axis=1)
...: df['new'] = np.where(m, sum2, sum1)
...:
100 loops, best of 3: 2.77 ms per loop
#jp_data_analysis's solution
In [313]: %%timeit
...: df['sum'] = df.apply(summer, axis=1, num=5)
...:
1 loop, best of 3: 287 ms per loop
答案 1 :(得分:0)
这是一种方式:
def summer(row, num):
return sum(i for i, j in zip([row['val1'], row['val2'], row['val3']],
[row['sv1'], row['sv2'], row['sv3']]) if j!=num)
df['sum'] = df.apply(summer, axis=1, num=5)