我想从R。
中的树创建一个平面data.frame
树由一个列表表示,每个列表都包含一个名为children
的键,其中包含更多包含更多子项的列表。
tree <-
list(name="root",
parent_name='None',
children=list(
list(parent_name="root", name="child1", children=list()),
list(parent_name="root", name="child2", children=list(list(parent_name="child2", name="child3", children=c())))
)
)
我想将其“扁平化”为具有以下结构的data.frame
:
name parent_name
1 root None
2 child1 root
3 child2 root
4 child3 child2
我可以使用以下递归函数来完成此任务:
walk_tree <- function(node) {
results <<- rbind(
results,
data.frame(
name=node$name,
parent_name=node$parent_name,
stringsAsFactors=FALSE
)
)
for (node in node$children) {
walk_tree(node)
}
}
此功能正常,但要求我在函数外声明results
data.frame
:
results <- NULL
walk_tree(tree)
results # now contains the data.frame as desired
此外,当<<-
函数作为函数包含在函数包中时,使用walk_tree
运算符会导致出现以下警告:
Note: no visible binding for '<<-' assignment to 'results'
运行<-
后,results
运算符不会NULL
评估为walk_tree
。
在R?
中从树中递归构建data.frame
的正确方法是什么?
答案 0 :(得分:3)
一种方法是将所有带有“names”和“parent_name”的节点聚集在一起,并用它们创建一个数据帧。
#Flatten the nested structure
u_tree <- unlist(tree)
#Gather all the indices where name of the node is equal to parent_name
inds <- grepl("parent_name$", names(u_tree))
#Add them in a dataframe
data.frame(name = u_tree[!inds], parent_name = u_tree[inds])
# name parent_name
# root None
#2 child1 root
#3 child2 root
#4 child3 child2
答案 1 :(得分:1)
你不是很远:),使用dplyr::bind_rows
walk_tree <- function(node) {
dplyr::bind_rows(
data.frame(
name=node$name,
parent_name=node$parent_name,
stringsAsFactors=FALSE),
lapply(node$children,walk_tree)
)
}
walk_tree(tree)
name parent_name
1 root None
2 child1 root
3 child2 root
4 child3 child2
和基础R版本:
walk_tree <- function(node) {
do.call(
rbind,
c(
list(data.frame(
name=node$name,
parent_name=node$parent_name,
stringsAsFactors=FALSE)),
lapply(node$children,walk_tree)
))
}
walk_tree(tree)
答案 2 :(得分:0)
rev(data.frame(matrix(stack(tree)[,1],,2,T)))#MHHH seems too easy for the task
X2 X1
1 None root
2 child1 root
3 child2 root
4 child3 child2
stack(tree)%>%
mutate(new=rep(1:(n()/2),each=2),ind=rep(ind[2:1],n()/2))%>%
spread(ind,values)
new name parent_name
1 1 None root
2 2 child1 root
3 3 child2 root
4 4 child3 child2
答案 3 :(得分:-1)
您可以使用ape
包中的优秀树结构,并以括号格式编写您的数据(逗号(,
)代表顶点,括号代表边缘,您的树叶是&#34 ;孩子&#34; - 树以分号(;
)结束。
## Reading a tree
my_tree <- "(child1, (child2, child3));"
tree <- ape::read.tree(text = my_tree)
## Getting the edge table (your flatten format)
tree$edge
# [,1] [,2]
#[1,] 4 1
#[2,] 4 5
#[3,] 5 2
#[4,] 5 3
您可以为任何子项添加额外的结构(树),如下所示: 或者使用与4
是root
(树中最深的顶点(叶子数+ 1))。它将"child1"
连接到顶点5
。 5
表示链接"child2"
和"child3"
的第一个顶点。
您可以将此结构可视化如下(phylo
)的## Plotting the tree
plot(tree)
ape::nodelabels()
child1_children <- ape::read.tree(text = "(child4, (child5, child6));")
## Adding child1_children to the first leave
tree2 <- ape::bind.tree(tree, child1_children, where = 1)
## Plotting the tree
plot(tree2)
ape::nodelabels()
tree2$edge
# [,1] [,2]
#[1,] 6 7
#[2,] 7 3
#[3,] 7 8
#[4,] 8 4
#[5,] 8 5
#[6,] 6 9
#[7,] 9 1
#[8,] 9 2
ape::drop.tip
相同的原则删除一些。