尝试运行以下代码以创建新列'Median Rank':
N=data2.Rank.count()
for i in data2.Rank:
data2['Median_Rank']=i-0.3/(N+0.4)
但我得到一个0.99802的常数值。即使我的排名栏如下:
data2.Rank.head()
Out[464]:
4131 1.0
4173 3.0
4172 3.0
4132 3.0
5335 10.0
4171 10.0
4159 10.0
5079 10.0
4115 10.0
4179 10.0
4180 10.0
4147 10.0
4181 10.0
4175 10.0
4170 10.0
4116 24.0
4129 24.0
4156 24.0
4153 24.0
4160 24.0
5358 24.0
4152 24.0
有人请指出我的代码中的错误。
答案 0 :(得分:1)
您的代码未经过矢量化。使用此:
N = data2.Rank.count()
data2['Median_Rank'] = data2['Rank'] - 0.3 / (N+0.4)
您的代码无效的原因是您在每个循环中分配整个列。因此,只有最后i
次迭代才会发生,data2['Median_Rank']
中的值保证相同。
答案 1 :(得分:1)
This occurs because every time you make data2['Median_Rank']=i-0.3/(N+0.4)
you are updating the entire column with the value calculated by the expression, the easiest way to do that actually don't need a loop:
N=data2.Rank.count()
data2['Median_Rank'] = data2.Rank-0.3/(N+0.4)
It is possible because pandas supports element-wise operations with series.
if you still want to use for
loop, you will need to use .at
and iterate by rows as follow:
for i, el in zip(df_filt.index,df_filt.rendimento_liquido.values):
df_filt.at[i,'Median_Rank']=el-0.3/(N+0.4)