在Sci-kit learn / python中对自然文本进行有效分类

时间:2018-02-05 05:10:30

标签: python-3.x machine-learning scikit-learn text-classification

我希望我的分类算法能够根据一组类别对基于自然语言的原始数据进行分类,当且仅当它能够满足某个类别的某个阈值准确度时(比如准确度的80%)我还想要我的分类器将特定原始文本分类为“未分类”类别。我该怎么做?

我的示例数据集:

+----------------------+------------+
| Details              | Category   |
+----------------------+------------+
| Any raw text1        | cat1       |
+----------------------+------------+
| any raw text2        | cat1       |
+----------------------+------------+
| any raw text5        | cat2       |
+----------------------+------------+
| any raw text7        | cat1       |
+----------------------+------------+
| any raw text8        | cat2       |
+----------------------+------------+
| Any raw text4        | cat4       |
+----------------------+------------+
| any raw text5        | cat4       |
+----------------------+------------+
| any raw text6        | cat3       |
+----------------------+------------+

这将是我的训练数据,我将划分与测试集和训练集相同的数据

import pandas as pd
import numpy as np
import scipy as sp
from sklearn.naive_bayes import MultinomialNB
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
import matplotlib.pyplot as plt  
from sklearn.model_selection import train_test_split 
data= pd.read_csv('mydata.xls.gold', delimiter='\t',usecols=
['Details','Category'],encoding='utf-8')
target_one=data['Category']
target_list=data['Category'].unique()         
x_train, x_test, y_train, y_test = train_test_split(data.Details, 
data.NUM_CATEGORY, random_state=42)
vect = CountVectorizer(ngram_range=(1,2))
#converting traning features into numeric vector
X_train = vect.fit_transform(x_train.values.astype('U'))
#converting training labels into numeric vector
X_test = vect.transform(x_test.values.astype('U'))
start = time.clock()

mnb = MultinomialNB(alpha =0.13)

mnb.fit(X_train,y_train)

result= mnb.predict(X_test)

print (time.clock()-start)

# mnb.predict_proba(x_test)[0:10,1]
accuracy_score(result,y_test)

我该怎么办?是否需要为分类器设置任何参数? 提前谢谢。

1 个答案:

答案 0 :(得分:1)

您可以使用predict_proba结果并使用columns = target_list创建一个pandas数据框,然后使用maxidxmax查找每个元素的概率最高的类别测试集。完成后,您可以使用布尔屏蔽和广播将低于阈值的类别设置为“未分类”

import pandas as pd

df = pd.DataFrame(clf.predict_proba(X_test), columns=target_list)
res_df = pd.DataFrame()

res_df['max_prob'] = df.max(axis=1)
res_df['max_prob_cat'] = df.idxmax(axis=1)

res_df.loc[res_df['max_prob'] < .8, 'max_prob_cat'] = 'unclassified'

df将如下所示

              cat1          cat2          cat3          cat4
0     1.091685e-06  2.257549e-04  9.994661e-01  3.070665e-04
1     2.288312e-02  9.752170e-01  1.783878e-03  1.159706e-04
2     1.980685e-01  3.494765e-01  4.416871e-01  1.076788e-02
3     2.205478e-07  9.999601e-01  3.276864e-05  6.920325e-06
4     2.736805e-03  9.795997e-01  1.718200e-02  4.815429e-04

res_df看起来像

      max_prob  max_prob_cat
0     0.999466          cat3
1     0.975217          cat2
2     0.441687  unclassified
3     0.999960          cat2
4     0.979600          cat2
5     0.999956          cat2
6     0.998864          cat3
7     0.996888          cat3
8     0.999422          cat1
9     0.994412          cat3
10    0.954508          cat2
11    0.999999          cat2