我有两个大数据框,如下所示:
DF
Tumor Tumor Tumor Tumor Tumor Tumor Tumor Tumor
gene0 16.8883 119.087 4.5331 6.6198 0.8511 1.7598 8.15 6.7992
gene1 7.9272 0.5438 28.1052 98.4692 31.4894 8.7989 4.075 141.213
gene2 2.7573 3.2626 15.4125 9.1022 7.6596 2.3464 6.52 1.569
gene3 3.1019 2.7189 3.6265 12.8258 5.9574 4.1062 163.814 21.4435
gene4 745.497 1387.71 553.944 541.581 448.511 675.172 764.466 850.941
[139 rows x 1101 columns]
和df2
idx = df.index.intersection(df2.index)
scipy.stats.ttest_ind(df.loc[idx], df2.loc[idx], axis=1)
error: 'Traceback (most recent call last):
File "data.py", line 75, in <module>
print(scipy.stats.ttest_ind(Module_1_df_Tumor.loc[idx], Module_1_df_Normal.loc[idx], axis=1))
File "C:\Python34\lib\site-packages\scipy\stats\stats.py", line 4066, in ttest_ind
df, denom = _equal_var_ttest_denom(v1, n1, v2, n2)
File "C:\Python34\lib\site-packages\scipy\stats\stats.py", line 3884, in _equal_var_ttest_denom
denom = np.sqrt(svar * (1.0 / n1 + 1.0 / n2))
AttributeError: 'float' object has no attribute 'sqrt'
有人知道如何在Normal和Tumor数据帧之间进行t检验以找出显着差异的基因吗?
我试过
question.no_value = value
question.save()
由于