如何使用张量流从ANN建立贝叶斯网络?

时间:2018-02-01 10:07:03

标签: neural-network bayesian-networks

我是机器学习的新手。我想建立贝叶斯神经网络。我之前有人工神经网络,我想用它来构建贝叶斯网络。我试着这样做,因为我想比较ANN和BN预测结果的结果,所以我认为两个程序的结构必须相同,如时期和隐藏层之和,除了ANN的模型结构或层结构和国阵。这是我的ANN代码:

import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data

mnist = input_data.read_data_sets("/tmp/data/", one_hot=True)

n_nodes_hl1 = 500
n_nodes_hl2 = 500
n_nodes_hl3 = 500

n_classes = 10
batch_size = 100

x = tf.placeholder('float', [None, 784])
y = tf.placeholder('float')


def neural_network_model(data):
    hidden_1_layer = {'weights': tf.Variable(tf.random_normal([784, n_nodes_hl1])),
                      'biases': tf.Variable(tf.random_normal([n_nodes_hl1]))}

    hidden_2_layer = {'weights': tf.Variable(tf.random_normal([n_nodes_hl1, n_nodes_hl2])),
                      'biases': tf.Variable(tf.random_normal([n_nodes_hl2]))}

    hidden_3_layer = {'weights': tf.Variable(tf.random_normal([n_nodes_hl2, n_nodes_hl3])),
                      'biases': tf.Variable(tf.random_normal([n_nodes_hl3]))}

    output_layer = {'weights': tf.Variable(tf.random_normal([n_nodes_hl3, n_classes])),
                    'biases': tf.Variable(tf.random_normal([n_classes])), }

    l1 = tf.add(tf.matmul(data, hidden_1_layer['weights']), hidden_1_layer['biases'])
    l1 = tf.nn.relu(l1)

    l2 = tf.add(tf.matmul(l1, hidden_2_layer['weights']), hidden_2_layer['biases'])
    l2 = tf.nn.relu(l2)

    l3 = tf.add(tf.matmul(l2, hidden_3_layer['weights']), hidden_3_layer['biases'])
    l3 = tf.nn.relu(l3)

    output = tf.matmul(l3, output_layer['weights']) + output_layer['biases']

    return output


def train_neural_network(x):
    prediction = neural_network_model(x)
    # OLD VERSION:
    # cost = tf.reduce_mean( tf.nn.softmax_cross_entropy_with_logits(prediction,y) )
    # NEW:
    cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=prediction, labels=y))
    optimizer = tf.train.AdamOptimizer().minimize(cost)

    hm_epochs = 10
    with tf.Session() as sess:
        # OLD:
        # sess.run(tf.initialize_all_variables())
        # NEW:
        sess.run(tf.global_variables_initializer())

        for epoch in range(hm_epochs):
            epoch_loss = 0
            for _ in range(int(mnist.train.num_examples / batch_size)):
                epoch_x, epoch_y = mnist.train.next_batch(batch_size)
                _, c = sess.run([optimizer, cost], feed_dict={x: epoch_x, y: epoch_y})
                epoch_loss += c

            print('Epoch', epoch, 'completed out of', hm_epochs, 'loss:', epoch_loss)

        correct = tf.equal(tf.argmax(prediction, 1), tf.argmax(y, 1))

        accuracy = tf.reduce_mean(tf.cast(correct, 'float'))
        print('Accuracy:', accuracy.eval({x: mnist.test.images, y: mnist.test.labels}))


train_neural_network(x)

我已经阅读了关于贝叶斯网络的tutorial,但我不太了解。那么,我可以调整上面的ANN代码来构建贝叶斯网络吗?

1 个答案:

答案 0 :(得分:2)

现在有点晚了但是如果你仍然在做这项工作,你可以查看本文https://papers.nips.cc/paper/1211-learning-bayesian-belief-networks-with-neural-network-estimators.pdf以了解要实施的内容和here以便顺利介绍相关参考资料

您可能需要实施自己的损失函数和优化程序,您应该查看这些答案herehere才能开始

我希望它会有所帮助!