下午全部,
我将数据从SQL服务器提取为csv格式,然后在中读取文件。
df = pd.read_csv(
'TKY_RFQs.csv',
sep='~',
usecols=[
0,1,2,3,4,5,6,7,8,9,
10,11,12,13,14,15,16,17,18,19,
20,21,22,23,24,25,26,27,28,29,
30,31,32,33,34,35,36,37
]
)
在我要删除的文件末尾有一个空行然后是记录计数。
我通过此代码解决了这个问题,但想解决根问题:
# Count_Row=df.shape[0] # gives number of row count
# df_Sample = df[['trading_book','state', 'rfq_num_of_dealers']].head(Count_Row-1)
有没有办法排除文件中的最后两行,或者可以选择删除所有列中包含空值的行?
皮特
答案 0 :(得分:0)
你可以尝试一下:
df = pd.read_csv(
'TKY_RFQs.csv',
sep='~',
usecols=[
0,1,2,3,4,5,6,7,8,9,
10,11,12,13,14,15,16,17,18,19,
20,21,22,23,24,25,26,27,28,29,
30,31,32,33,34,35,36,37
]
)[:-2]
示例:
from pandas import read_csv
url = "https://archive.ics.uci.edu/ml/machine-learning-databases/pima-indians-diabetes/pima-indians-diabetes.data"
names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class']
data = read_csv(url, names=names)[:-2] #to exclude last two rows
#data = read_csv(url, names=names) #to include all rows
print data
#description = data.describe()
答案 1 :(得分:0)
您可以直接在.read_csv
中使用skiprows
df = pd.read_csv(
'TKY_RFQs.csv',
sep='~',
usecols=[
0,1,2,3,4,5,6,7,8,9,
10,11,12,13,14,15,16,17,18,19,
20,21,22,23,24,25,26,27,28,29,
30,31,32,33,34,35,36,37
],
skiprows=-2 # added this line to skip rows when reading
)