我正在尝试构建一个简单的卷积神经网络,将时间序列分为六个类中的一个。由于不兼容的形状错误,我在训练网络时遇到问题。
在以下代码中,n_feats = 1000
,n_classes = 6
。
Fs = 100
input_layer = Input(shape=(None, n_feats), name='input_layer')
conv_layer = Conv1D(filters=32, kernel_size=Fs*4, strides=int(Fs/2), padding='same', activation='relu', name='conv_net_coarse')(input_layer)
conv_layer = MaxPool1D(pool_size=4, name='c_maxp_1')(conv_layer)
conv_layer = Dropout(rate=0.5, name='c_dropo_1')(conv_layer)
output_layer = Dense(n_classes, name='output_layer')(conv_layer)
model = Model(input_layer, output_layer)
model.compile(loss='categorical_crossentropy', optimizer='rmsprop', metrics=['accuracy'])
print(model.summary())
这是模型摘要。
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
input_layer (InputLayer) (None, None, 1000) 0
_________________________________________________________________
conv_net_coarse (Conv1D) (None, None, 32) 12800032
_________________________________________________________________
c_maxp_1 (MaxPooling1D) (None, None, 32) 0
_________________________________________________________________
c_dropo_1 (Dropout) (None, None, 32) 0
_________________________________________________________________
output_layer (Dense) (None, None, 6) 198
=================================================================
Total params: 12,800,230
Trainable params: 12,800,230
Non-trainable params: 0
_________________________________________________________________
None
当我运行时model.fit(X_train, Y_train)
,X_train
形状为(30000, 1, 1000)
而Y_train
形状为(30000, 1, 6)
时,我会遇到不兼容的形状错误:
InvalidArgumentError (see above for traceback): Incompatible shapes: [32,0,6] vs. [1,6,1]
[[Node: output_layer/add = Add[T=DT_FLOAT, _device="/job:localhost/replica:0/task:0/gpu:0"](output_layer/Reshape_2, output_layer/Reshape_3)]]
[[Node: metrics_1/acc/Mean/_197 = _Recv[client_terminated=false, recv_device="/job:localhost/replica:0/task:0/cpu:0", send_device="/job:localhost/replica:0/task:0/gpu:0", send_device_incarnation=1, tensor_name="edge_637_metrics_1/acc/Mean", tensor_type=DT_FLOAT, _device="/job:localhost/replica:0/task:0/cpu:0"]()]]
如果我移除MaxPool1D
和Dropout
图层,模型训练就好了。我没有正确指定这些图层吗?
任何帮助将不胜感激!
答案 0 :(得分:2)
所以 - 问题在于两个事实:
(number_of_examples, timesteps, features)
,其中特征是每个时间步记录的内容。这意味着您应该将数据重新整形为(number_of_examples, 1000, 1)
,因为您的时间顺序有1000次步骤和1个功能。Flatten
图层之前使用Dropout
。