我检查了我的线性回归模型(WMAN = Species,WDNE = sea surface temp)并找到了自相关,所以相反,我正在尝试使用以下脚本的广义最小二乘;
library(nlme)
modelwa <- gls(WMAN ~WDNE, data=dat,
correlation = corAR1(form=~MONTH),
na.action=na.omit)
summary(modelwa)
我比较了两种模型;
> library(MuMIn)
> model.sel(modelw,modelwa)
Model selection table
(Intrc) WDNE class na.action correlation df logLik AICc delta
modelwa 31.50 0.1874 gls na.omit crAR1(MONTH) 4 -610.461 1229.2 0.00
modelw 11.31 0.7974 lm na.excl 3 -658.741 1323.7 94.44
weight
modelwa 1
modelw 0
Abbreviations:
na.action: na.excl = ‘na.exclude’
correlation: crAR1(MONTH) = ‘corAR1(~MONTH)’
Models ranked by AICc(x)
我相信结果表明我应该使用gls,因为AIC较低。
我的问题是,我一直在报告F值/R²/ p值,但gls的输出没有这些?
如果有人能协助我解释这些结果,我将非常感激?
> summary(modelwa)
Generalized least squares fit by REML
Model: WMAN ~ WDNE
Data: mp2017.dat
AIC BIC logLik
1228.923 1240.661 -610.4614
Correlation Structure: ARMA(1,0)
Formula: ~MONTH
Parameter estimate(s):
Phi1
0.4809973
Coefficients:
Value Std.Error t-value p-value
(Intercept) 31.496911 8.052339 3.911524 0.0001
WDNE 0.187419 0.091495 2.048401 0.0424
Correlation:
(Intr)
WDNE -0.339
Standardized residuals:
Min Q1 Med Q3 Max
-2.023362 -1.606329 -1.210127 1.427247 3.567186
Residual standard error: 18.85341
Degrees of freedom: 141 total; 139 residual
>
答案 0 :(得分:0)
我现在已经克服了自动关联的问题,所以我可以使用lm()
将残差的lag1作为X变量添加到原始模型中。这可以使用slide
包中的DataCombine
函数来完成。
library(DataCombine)
econ_data <- data.frame(economics, resid_mod1=lmMod$residuals)
econ_data_1 <- slide(econ_data, Var="resid_mod1",
NewVar = "lag1", slideBy = -1)
econ_data_2 <- na.omit(econ_data_1)
lmMod2 <- lm(pce ~ pop + lag1, data=econ_data_2)
可以找到此脚本here