我正在尝试在Dash框架内创建交互式图形。我是这种类型的设置的新手,因此我开始简单地通过重新创建"更多关于可视化"在getting started guide中找到的散点图,稍微添加了一个低值回归。期望的结果是样本图保持与添加的拟合回归相同。我的代码是:
import dash
import dash_core_components as dcc
import dash_html_components as html
import plotly.graph_objs as go
import pandas as pd
import statsmodels.api as sm
app = dash.Dash()
df = pd.read_csv(
'https://gist.githubusercontent.com/chriddyp/' +
'5d1ea79569ed194d432e56108a04d188/raw/' +
'a9f9e8076b837d541398e999dcbac2b2826a81f8/'+
'gdp-life-exp-2007.csv')
performance_line = pd.DataFrame(sm.nonparametric.lowess(df['life expectancy'], df['gdp per capita'], frac=0.75))
app.layout = html.Div([
dcc.Graph(
id='life-exp-vs-gdp',
figure={
'data': [
go.Scatter(
x = performance_line[0],
y = performance_line[1],
mode = 'lines',
line = dict(
width=0.5
),
name = 'Fit'
),
go.Scatter(
x=df[df['continent'] == i]['gdp per capita'],
y=df[df['continent'] == i]['life expectancy'],
text=df[df['continent'] == i]['country'],
mode='markers',
opacity=0.7,
marker={
'size': 15,
'line': {'width': 0.5, 'color': 'white'}
},
name=i
) for i in df.continent.unique()
],
'layout': go.Layout(
xaxis={'type': 'log', 'title': 'GDP Per Capita'},
yaxis={'title': 'Life Expectancy'},
margin={'l': 40, 'b': 40, 't': 10, 'r': 10},
legend={'x': 0, 'y': 1},
hovermode='closest'
)
}
)
])
if __name__ == '__main__':
app.run_server()
由于散点图之后的for循环,此代码无效。我试过在()和[]中包含它,但是JSON子程序不能处理生成器而[]停止中断,但实际上并没有绘制散点图。如何使用额外的lowess回归得到此图?
答案 0 :(得分:0)
在我看来,就像语法问题一样,列表推导具有以下格式(原谅简单):
[(something with i) for i in (iterable)]
而你正在尝试的是
[(unrelated item), (something with i) for i in (iterable)]
以下稍作修改应该有效:
[(unrelated item)]+[(something with i) for i in (iterable)]
所以最终的代码将是这样的。
import dash
import dash_core_components as dcc
import dash_html_components as html
import plotly.graph_objs as go
import pandas as pd
import statsmodels.api as sm
app = dash.Dash()
df = pd.read_csv(
'https://gist.githubusercontent.com/chriddyp/' +
'5d1ea79569ed194d432e56108a04d188/raw/' +
'a9f9e8076b837d541398e999dcbac2b2826a81f8/'+
'gdp-life-exp-2007.csv')
performance_line = pd.DataFrame(sm.nonparametric.lowess(df['life expectancy'], df['gdp per capita'], frac=0.75))
app.layout = html.Div([
dcc.Graph(
id='life-exp-vs-gdp',
figure={
'data': [
go.Scatter(
x = performance_line[0],
y = performance_line[1],
mode = 'lines',
line = dict(
width=0.5
),
name = 'Fit'
)
]+[
go.Scatter(
x=df[df['continent'] == i]['gdp per capita'],
y=df[df['continent'] == i]['life expectancy'],
text=df[df['continent'] == i]['country'],
mode='markers',
opacity=0.7,
marker={
'size': 15,
'line': {'width': 0.5, 'color': 'white'}
},
name=i
) for i in df.continent.unique()
],
'layout': go.Layout(
xaxis={'type': 'log', 'title': 'GDP Per Capita'},
yaxis={'title': 'Life Expectancy'},
margin={'l': 40, 'b': 40, 't': 10, 'r': 10},
legend={'x': 0, 'y': 1},
hovermode='closest'
)
}
)
])
if __name__ == '__main__':
app.run_server()