我将RDD更改为DataFrame并将结果与我使用read.csv导入的另一个DataFrame进行比较,但浮点精度与两种方法不同。感谢您的帮助。
我使用的数据来自here。
x
from pyspark.sql import Row
from pyspark.sql.types import *
orders = sc.textFile("retail_db/orders")
order_items = sc.textFile('retail_db/order_items')
orders_comp = orders.filter(lambda line: ((line.split(',')[-1] == 'CLOSED') or (line.split(',')[-1] == 'COMPLETE')))
orders_compMap = orders_comp.map(lambda line: (int(line.split(',')[0]), line.split(',')[1]))
order_itemsMap = order_items.map(lambda line: (int(line.split(',')[1]),
(int(line.split(',')[2]), float(line.split(',')[4])) ))
joined = orders_compMap.join(order_itemsMap)
joined2 = joined.map(lambda line: ((line[1][0], line[1][1][0]), line[1][1][1]))
joined3 = joined2.reduceByKey(lambda a, b : a +b).sortByKey()
df1 = joined3.map(lambda x:Row(date = x[0][0], product_id = x[0][1], total = x[1])).toDF().select(['date','product_id', 'total'])
schema = StructType([StructField('order_id', IntegerType(), True),
StructField('date', StringType(), True),
StructField('customer_id', StringType(), True),
StructField('status', StringType(), True)])
orders2 = spark.read.csv("retail_db/orders",schema = schema)
schema = StructType([StructField('item_id', IntegerType(), True),
StructField('order_id', IntegerType(), True),
StructField('product_id', IntegerType(), True),
StructField('quantity', StringType(), True),
StructField('sub_total', FloatType(), True),
StructField('product_price', FloatType(), True)])
orders_items2 = spark.read.csv("retail_db/order_items", schema = schema)
orders2.registerTempTable("orders2t")
orders_items2.registerTempTable("orders_items2t")
df2 = spark.sql('select o.date, oi.product_id, sum(oi.sub_total) \
as total from orders2t as o inner join orders_items2t as oi on
o.order_id = oi.order_id \
where o.status in ("CLOSED", "COMPLETE") group by o.date,
oi.product_id order by o.date, oi.product_id')
答案 0 :(得分:1)
忽略转换中的精度损失并不相同。
<强>的Python 强>
根据Python's Floating Point Arithmetic: Issues and Limitations标准实现,使用64位表示:
今天(2000年11月)几乎所有机器都使用IEEE-754浮点运算,几乎所有平台都将Python浮点数映射到IEEE-754“双精度”。 754双精度包含53位精度,
Spark SQL
在Spark SQL FloatType
uses 32 bit representation中:
FloatType
:表示4字节的单精度浮点数。
使用DoubleType
可能更接近:
DoubleType
:表示8字节的双精度浮点数。
但如果可预测的行为很重要,则应使用具有明确定义精度的DecimalTypes
。