尝试在Keras中创建BLSTM网络时出现TypeError

时间:2018-01-23 17:14:24

标签: python-3.x keras lstm recurrent-neural-network keras-layer

我对Keras和深度学习有点新鲜。我目前正在尝试复制此paper但是当我编译第二个模型(使用LSTM)时,我收到以下错误:

"TypeError: unsupported operand type(s) for +: 'NoneType' and 'int'"

模型的描述如下:

  1. 输入(长度T是设备特定的窗口大小)
  2. 与过滤器size 3,5和7并行1D卷积 分别为stride=1number of filters=32activation type=linearborder mode=same
  3. 合并输出的合并图层 并行1D卷积
  4. 双向LSTM由前向LSTM组成 和一个向后的LSTM,output_dim=128
  5. 双向LSTM由前向LSTM组成 和一个向后的LSTM,output_dim=128
  6. 密集层,output_dim=128activation type=ReLU
  7. 密集层,output_dim= Tactivation type=linear
  8. 我的代码是:

    from keras import layers, Input
    from keras.models import Model
    
    def lstm_net(T):
        input_layer = Input(shape=(T,1))
        branch_a = layers.Conv1D(32, 3, activation='linear', padding='same', strides=1)(input_layer)
        branch_b = layers.Conv1D(32, 5, activation='linear', padding='same', strides=1)(input_layer)
        branch_c = layers.Conv1D(32, 7, activation='linear', padding='same', strides=1)(input_layer)
    
        merge_layer = layers.Concatenate(axis=-1)([branch_a, branch_b, branch_c])
        print(merge_layer.shape)
        BLSTM1 = layers.Bidirectional(layers.LSTM(128, input_shape=(8,40,96)))(merge_layer)
        print(BLSTM1.shape)
        BLSTM2 = layers.Bidirectional(layers.LSTM(128))(BLSTM1)
        dense_layer = layers.Dense(128, activation='relu')(BLSTM2)
        output_dense = layers.Dense(1, activation='linear')(dense_layer)
        model = Model(input_layer, output_dense)
        model.name = "lstm_net"
        return model
    
    model = lstm_net(40)
    

    之后我得到了上述错误。我的目标是给出一批长度为40的8个序列作为输入,并获得一批8个长度为40的序列作为输出。我在Keras Github LSTM layer cannot connect to Dense layer after Flatten #818上发现了这个问题,@ fchollet建议我应该指定' input_shape'在我做的第一层,但可能不正确。我把两个打印语句看成形状如何变化,输出是:

    (?, 40, 96)
    (?, 256)
    

    错误发生在BLSTM2定义的行上,可以完整地看到here

1 个答案:

答案 0 :(得分:1)

Your problem lies in these three lines:

BLSTM1 = layers.Bidirectional(layers.LSTM(128, input_shape=(8,40,96)))(merge_layer)
print(BLSTM1.shape)
BLSTM2 = layers.Bidirectional(layers.LSTM(128))(BLSTM1)

As a default, LSTM is returning only the last element of computations - so your data is losing its sequential nature. That's why the proceeding layer raises an error. Change this line to:

BLSTM1 = layers.Bidirectional(layers.LSTM(128, return_sequences=True))(merge_layer)
print(BLSTM1.shape)
BLSTM2 = layers.Bidirectional(layers.LSTM(128))(BLSTM1)

In order to make the input to the second LSTM to have sequential nature also.

Aside of this - I'd rather not use input_shape in middle model layer as it's automatically inferred.