我正在尝试使用keras创建自动编码器,并且我的数据形状如下所示:
(62328, 1, 40, 40)
错误:
ValueError:负尺寸大小是由于输入形状为[?,1,40,40],[3,3,40,4]的'conv2d / Conv2D'(op:'Conv2D')从1中减去3引起的
,我不知道如何解决。我尝试将data_format
更改为channels_last
或channels_first
,但仍然无法正常工作。
请帮助
K.set_image_data_format('channels_last')
dense_layer = 0
layer_size = 4
conv_layer = 1
IMG_SIZE = 40
NAME = "AutoEncoder-{}-conv-{}-nodes-{}-dense-{}".format(conv_layer, layer_size, dense_layer, int(time.time()))
加载数据
pickle_in = open("X5.pickle","rb")
X = pickle.load(pickle_in)
pickle_in.close()
X=np.array(X)
print( X.shape)
X= X/255
pickle_in = open("y5.pickle","rb")
y = pickle.load(pickle_in)
pickle_in.close()
y=np.array(y)
从喀拉拉邦的模型开始
model = Sequential()
#encoding
这是我的问题发生的地方
shape=[1,IMG_SIZE,IMG_SIZE]
print (shape)
model.add(Conv2D(4, (3,3),input_shape = shape))
编码/解码数据
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Conv2D(2, (3,3)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Conv2D(2, (3,3)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2))) #encoded
#decoding
model.add(UpSampling2D((2,2)))
model.add(Conv2D(2, (3,3)))
model.add(Activation('relu'))
model.add(UpSampling2D((2,2)))
model.add(Conv2D(2, (3,3)))
model.add(Activation('relu'))
model.add(UpSampling2D((2,2)))
model.add(Conv2D(4, (3,3)))
model.add(Activation('relu'))
model.add(Conv2D(1,(3,3)))
model.add(Activation('sigmoid'))
tensorboard = TensorBoard(log_dir="logs/{}".format(NAME))
model.compile(loss='binary_crossentropy',
optimizer='adam',
metrics=['accuracy'],
)
model.summary()
model.fit(X,X,
batch_size=32,
epochs=10,
validation_split=0.3,
callbacks=[tensorboard])
model.save("64x3-CND.model")
答案 0 :(得分:0)
这是因为您的输入形状不正确,并且data_format
变量设置为channels_last
,所以图像的输入形状应为(HEIGHT,WIDTH,CHANNELS_NUM)。
将data_format
更改为channels_first
应该可以解决您的问题。
K.set_image_data_format('channels_first')