不以格式化方式恢复和转换数据

时间:2018-01-23 09:43:56

标签: python arrays numpy

我在python中有这样的数据,并且是字符串类型。

('single image encodings************', '[-0.0810571   0.07765304 -0.01207364 -0.07887193 -0.10862262  0.00894677\n  0.02332557 -0.13491267  0.17760251 -0.05169698  0.14168473 -0.02124487\n -0.18840104 -0.00166624 -0.04524321  0.05642941 -0.20851628 -0.11587431\n -0.06982738 -0.09224549  0.07435957  0.05051775 -0.00907151  0.06328857\n -0.21342427 -0.28789386 -0.16309851 -0.0865657   0.15885921 -0.1180099\n -0.02833412  0.05563367 -0.20987368 -0.08260232  0.01715455  0.03688456\n -0.0463421  -0.07057426  0.19063213  0.06713615 -0.15279283  0.05829819\n  0.08128895  0.29696086  0.22681116  0.09677196 -0.02023378 -0.0361901\n  0.09358779 -0.23957716  0.15015952  0.13825837  0.00492278  0.06615157\n  0.1174949  -0.17725426 -0.03603006  0.03409255 -0.1879885   0.03505005\n  0.04937597  0.00329883 -0.01896965 -0.00677846  0.0996637   0.10273074\n -0.03806393 -0.14637196  0.15648144 -0.23035409 -0.05747294  0.03025337\n -0.0691918  -0.11424079 -0.28547999  0.05400954  0.4612399   0.20551455\n -0.1205992   0.10039085 -0.02485273 -0.08657033  0.15424132  0.02397859\n -0.10445568  0.06970545 -0.08628456  0.10466914  0.15395048  0.03581595\n -0.06539053  0.2473422   0.02394313  0.01033761  0.12121034  0.07658306\n -0.15766957 -0.04047695 -0.17851622 -0.08721714  0.14192414  0.04055045\n  0.01483513  0.19600785 -0.14814621  0.20973045  0.02028378 -0.06801224\n -0.08009423 -0.02115281 -0.14955129  0.01807878  0.1297669  -0.2507216\n  0.11424468  0.11775573 -0.05532342  0.11031963  0.10643894 -0.02885438\n  0.03168463 -0.0032694  -0.15598211 -0.09769975  0.07611469 -0.02105711\n  0.09928153  0.03357534]\n')

如何以这种方式转换上述数据这是维数组数据。 这些数据的类型是' numpy.ndarray' 我想在数据下面找到numpy.ndarray ......

("我的输出是",[ - 0.0810571 0.07765304 -0.01207364 -0.07887193 -0.10862262 0.00894677       0.02332557 -0.13491267 0.17760251 -0.05169698 0.14168473 -0.02124487      -0.18840104 -0.00166624 -0.04524321 0.05642941 -0.20851628 -0.11587431      -0.06982738 -0.09224549 0.07435957 0.05051775 -0.00907151 0.06328857      -0.21342427 -0.28789386 -0.16309851 -0.0865657 0.15885921 -0.1180099      -0.02833412 0.05563367 -0.20987368 -0.08260232 0.01715455 0.03688456      -0.0463421 -0.07057426 0.19063213 0.06713615 -0.15279283 0.05829819       0.08128895 0.29696086 0.22681116 0.09677196 -0.02023378 -0.0361901       0.09358779 -0.23957716 0.15015952 0.13825837 0.00492278 0.06615157       0.1174949 -0.17725426 -0.03603006 0.03409255 -0.1879885 0.03505005       0.04937597 0.00329883 -0.01896965 -0.00677846 0.0996637 0.10273074      -0.03806393 -0.14637196 0.15648144 -0.23035409 -0.05747294 0.03025337      -0.0691918 -0.11424079 -0.28547999 0.05400954 0.4612399 0.20551455      -0.1205992 0.10039085 -0.02485273 -0.08657033 0.15424132 0.02397859      -0.10445568 0.06970545 -0.08628456 0.10466914 0.15395048 0.03581595      -0.06539053 0.2473422 0.02394313 0.01033761 0.12121034 0.07658306      -0.15766957 -0.04047695 -0.17851622 -0.08721714 0.14192414 0.04055045       0.01483513 0.19600785 -0.14814621 0.20973045 0.02028378 -0.06801224      -0.08009423 -0.02115281 -0.14955129 0.01807878 0.1297669 -0.2507216       0.11424468 0.11775573 -0.05532342 0.11031963 0.10643894 -0.02885438       0.03168463 -0.0032694 -0.15598211 -0.09769975 0.07611469 -0.02105711       0.09928153 0.03357534])

提前致谢

1 个答案:

答案 0 :(得分:0)

您可以先替换所有括号和换行符&按空间划分。

#from numpy import array
k = ('single image encodings************', '[-0.0810571   0.07765304 -0.01207364 -0.07887193 -0.10862262  0.00894677\n  0.02332557 -0.13491267  0.17760251 -0.05169698  0.14168473 -0.02124487\n -0.18840104 -0.00166624 -0.04524321  0.05642941 -0.20851628 -0.11587431\n -0.06982738 -0.09224549  0.07435957  0.05051775 -0.00907151  0.06328857\n -0.21342427 -0.28789386 -0.16309851 -0.0865657   0.15885921 -0.1180099\n -0.02833412  0.05563367 -0.20987368 -0.08260232  0.01715455  0.03688456\n -0.0463421  -0.07057426  0.19063213  0.06713615 -0.15279283  0.05829819\n  0.08128895  0.29696086  0.22681116  0.09677196 -0.02023378 -0.0361901\n  0.09358779 -0.23957716  0.15015952  0.13825837  0.00492278  0.06615157\n  0.1174949  -0.17725426 -0.03603006  0.03409255 -0.1879885   0.03505005\n  0.04937597  0.00329883 -0.01896965 -0.00677846  0.0996637   0.10273074\n -0.03806393 -0.14637196  0.15648144 -0.23035409 -0.05747294  0.03025337\n -0.0691918  -0.11424079 -0.28547999  0.05400954  0.4612399   0.20551455\n -0.1205992   0.10039085 -0.02485273 -0.08657033  0.15424132  0.02397859\n -0.10445568  0.06970545 -0.08628456  0.10466914  0.15395048  0.03581595\n -0.06539053  0.2473422   0.02394313  0.01033761  0.12121034  0.07658306\n -0.15766957 -0.04047695 -0.17851622 -0.08721714  0.14192414  0.04055045\n  0.01483513  0.19600785 -0.14814621  0.20973045  0.02028378 -0.06801224\n -0.08009423 -0.02115281 -0.14955129  0.01807878  0.1297669  -0.2507216\n  0.11424468  0.11775573 -0.05532342  0.11031963  0.10643894 -0.02885438\n  0.03168463 -0.0032694  -0.15598211 -0.09769975  0.07611469 -0.02105711\n  0.09928153  0.03357534]\n')
a = k[1]

a = a.replace("[", "").replace("]", "").replace("\n", "")
print [a]

结果:

['-0.0810571   0.07765304 -0.01207364 -0.07887193 -0.10862262  0.00894677  0.02332557 -0.13491267  0.17760251 -0.05169698  0.14168473 -0.02124487 -0.18840104 -0.00166624 -0.04524321  0.05642941 -0.20851628 -0.11587431 -0.06982738 -0.09224549  0.07435957  0.05051775 -0.00907151  0.06328857 -0.21342427 -0.28789386 -0.16309851 -0.0865657   0.15885921 -0.1180099 -0.02833412  0.05563367 -0.20987368 -0.08260232  0.01715455  0.03688456 -0.0463421  -0.07057426  0.19063213  0.06713615 -0.15279283  0.05829819  0.08128895  0.29696086  0.22681116  0.09677196 -0.02023378 -0.0361901  0.09358779 -0.23957716  0.15015952  0.13825837  0.00492278  0.06615157  0.1174949  -0.17725426 -0.03603006  0.03409255 -0.1879885   0.03505005  0.04937597  0.00329883 -0.01896965 -0.00677846  0.0996637   0.10273074 -0.03806393 -0.14637196  0.15648144 -0.23035409 -0.05747294  0.03025337 -0.0691918  -0.11424079 -0.28547999  0.05400954  0.4612399   0.20551455 -0.1205992   0.10039085 -0.02485273 -0.08657033  0.15424132  0.02397859 -0.10445568  0.06970545 -0.08628456  0.10466914  0.15395048  0.03581595 -0.06539053  0.2473422   0.02394313  0.01033761  0.12121034  0.07658306 -0.15766957 -0.04047695 -0.17851622 -0.08721714  0.14192414  0.04055045  0.01483513  0.19600785 -0.14814621  0.20973045  0.02028378 -0.06801224 -0.08009423 -0.02115281 -0.14955129  0.01807878  0.1297669  -0.2507216  0.11424468  0.11775573 -0.05532342  0.11031963  0.10643894 -0.02885438  0.03168463 -0.0032694  -0.15598211 -0.09769975  0.07611469 -0.02105711  0.09928153  0.03357534']