我正在使用Tensorflow Estimator API来训练一些模型,但是发现我必须为每个功能使用tf.feature_column
我的数据集由以下列组成:
[' age',' workclass',' education',' education_num',' marital_status', '职业','关系','种族','性别',' capital_gain', ' capital_loss',' hours_per_week',' native_country',' income_bracket']
为什么我必须像这样做
gender = tf.feature_column.categorical_column_with_hash_bucket("gender", hash_bucket_size=10)
occupation = tf.feature_column.categorical_column_with_hash_bucket("occupation", hash_bucket_size=1000)
marital_status = tf.feature_column.categorical_column_with_hash_bucket("marital_status", hash_bucket_size=1000)
relationship = tf.feature_column.categorical_column_with_hash_bucket("relationship", hash_bucket_size=1000)
education = tf.feature_column.categorical_column_with_hash_bucket("education", hash_bucket_size=1000)
workclass = tf.feature_column.categorical_column_with_hash_bucket("workclass", hash_bucket_size=1000)
native_country = tf.feature_column.categorical_column_with_hash_bucket("native_country", hash_bucket_size=1000)
..等,似乎不是处理功能预处理的最佳方式。有没有更好的方法,或者如果我们去tf.estimator