我正在重新实现Deep MNIST for Experts中的示例,该示例构造一个简单的CNN并在MNIST数据集上运行。但是在这行代码中引发了一个错误:h_conv1 = tf.nn.leaky_relu(conv2d(x_image, W_conv1) + b_conv1, alpha=1/3)
。整个代码脚本是:
def weight_variable(shape):
initial = tf.truncated_normal(shape, stddev=0.1)
return tf.Variable(initial)
def bias_variable(shape):
initial = tf.constant(0.1, shape=shape)
return tf.Variable(initial)
# Real data
x = tf.placeholder(tf.float32, shape=[None, 784])
y_ = tf.placeholder(tf.float32, shape=[None, 10])
# First layer pair
W_conv1 = weight_variable([3, 3, 1, 60])
b_conv1 = bias_variable([60])
x_image = tf.reshape(x, [-1, 28, 28, 1])
h_conv1 = tf.nn.leaky_relu(conv2d(x_image, W_conv1) + b_conv1, alpha=1/3)
h_pool1 = max_pool_2x2(h_conv1)
错误追溯是:
Traceback (most recent call last):
File "scn_mnist.py", line 118, in <module>
h_conv1 = tf.nn.leaky_relu(conv2d(x_image, W_conv1) + b_conv1, alpha=1/3)
File "/root/anaconda2/lib/python2.7/site-packages/tensorflow/python/ops/nn_ops.py", line 1543, in leaky_relu
return math_ops.maximum(alpha * features, features)
File "/root/anaconda2/lib/python2.7/site-packages/tensorflow/python/ops/math_ops.py", line 885, in binary_op_wrapper
y = ops.convert_to_tensor(y, dtype=x.dtype.base_dtype, name="y")
File "/root/anaconda2/lib/python2.7/site-packages/tensorflow/python/framework/ops.py", line 836, in convert_to_tensor
as_ref=False)
File "/root/anaconda2/lib/python2.7/site-packages/tensorflow/python/framework/ops.py", line 926, in internal_convert_to_tensor
ret = conversion_func(value, dtype=dtype, name=name, as_ref=as_ref)
File "/root/anaconda2/lib/python2.7/site-packages/tensorflow/python/framework/ops.py", line 774, in _TensorTensorConversionFunction
(dtype.name, t.dtype.name, str(t)))
ValueError: Tensor conversion requested dtype int32 for Tensor with dtype float32: 'Tensor("add:0", shape=(?, 28, 28, 60), dtype=float32)'
我检查了x_image
(即tf.float32),W_conv1
(tf.float32_ref)和b_conv1
(tf.float32_ref)的数据类型。数据类型似乎没有问题,所以我真的无法弄清楚症结。
答案 0 :(得分:3)
问题在于alpha
,tensorflow将其解释为int。将其更改为alpha=0.3
以避免转化。