我构建了一个MLP并集成了一个称为轮廓系数函数的函数,并用它训练网络。但是,在测试时,我需要降低一些权重(10% - 100%,增量为10%),以研究这种调整将如何影响分类准确性。
我期待获得10套测试准确度,每个百分比配置一个。
在测试时丢弃权重的函数(multilayer_perceptron_drop
)位于“使用轮廓系数降低权重”标题下。我没有收到任何错误,但它返回测试准确度=无。
# Multilayer Perceptron.
from __future__ import print_function
# Import MNIST data
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets("/tmp/data/", one_hot=True)
import time
import numpy as np
import tensorflow as tf
import math
import matplotlib.pyplot as plt
from tensorflow.python.framework import ops
# Parameters
learning_rate = 0.07
training_epochs = 10
batch_size = 64
display_step = 1
# Network Parameters
n_1 = 100 # 1st layer number of neurons
n_2 = 100 # 2nd layer number of neurons
n_input = 784 # MNIST data input (img shape: 28*28)
n_classes = 10 # MNIST total classes (0-9 digits)
tic = time.time()
# tf Graph input
tf.reset_default_graph()
X = tf.placeholder(tf.float32, [None, n_input])
Y = tf.placeholder(tf.float32, [None, n_classes])
# Store layers weight & bias
def initialize_param(n_input, n_1, n_2, n_class):
tf.set_random_seed(1)
W1 = tf.get_variable("W1", shape = [n_input, n_1], initializer = tf.contrib.layers.xavier_initializer(seed = 1))
b1 = tf.get_variable("b1", shape = [n_1], initializer = tf.zeros_initializer())
W2 = tf.get_variable("W2", shape = [n_1, n_2], initializer = tf.contrib.layers.xavier_initializer(seed = 1))
b2 = tf.get_variable("b2", shape = [n_2], initializer = tf.zeros_initializer())
W3 = tf.get_variable("W3", shape = [n_2, n_class], initializer = tf.contrib.layers.xavier_initializer(seed = 1))
b3 = tf.get_variable("b3", shape = [n_class], initializer = tf.zeros_initializer())
parameters = {"W1": W1,
"b1": b1,
"W2": W2,
"b2": b2,
"W3": W3,
"b3": b3}
return parameters
parameters = initialize_param(784, 100, 100, 10)
# Create profile function
def linear_func(n):
return[np.float32(1.0 - 1.0 * i/n) for i in range(1, n + 1)]
L = linear_func(100)
# Create model with profile coefficient
def multilayer_perceptron(x):
Z1 = tf.add(tf.matmul(x, parameters['W1']), parameters['b1']) # First fully connected layer with complete input channels
A1 = tf.nn.relu(Z1)
P1 = tf.multiply(L, A1)
Z2 = tf.add(tf.matmul(P1, parameters['W2']), parameters['b2']) # Second fully connected layer with half input channels (0.5 neurons)
A2 = tf.nn.relu(Z2)
P2 = tf.multiply(L, A2)
out_layer = tf.add(tf.matmul(P2, parameters['W3']), parameters['b3']) # Output fully connected layer with quater input channels (0.25 neuron for each class)
return out_layer
# Construct model
logits = multilayer_perceptron(X)
# Define loss and optimizer
loss_op = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits = logits, labels = Y))
optimizer = tf.train.GradientDescentOptimizer(learning_rate = learning_rate).minimize(loss_op)
# Initializing the variables
init = tf.global_variables_initializer()
with tf.Session() as sess:
sess.run(init)
# Training Loop
cost = []
for epoch in range(training_epochs):
avg_cost = 0.
total_batch = int(mnist.train.num_examples/batch_size)
# Loop over all batches
for i in range(total_batch):
batch_x, batch_y = mnist.train.next_batch(batch_size)
# Run optimization op (backprop) and cost op (to get loss value)
_, c = sess.run([optimizer, loss_op], feed_dict = {X: batch_x, Y: batch_y})
# Compute average loss
avg_cost += c / total_batch
cost.append(avg_cost)
if i % 5000 == 0:
pred = tf.nn.softmax(logits) # Apply softmax to logits
correct_prediction = tf.equal(tf.argmax(pred, 1), tf.argmax(Y, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))
trian_accuracy = accuracy.eval({X: mnist.train.images, Y: mnist.train.labels})
# Display logs per epoch step
if epoch % display_step == 0:
print("Epoch:", '%03d' % (epoch + 1), "cost = {:.9f}".format(avg_cost))
# Create profile function
def linear_func(n):
return[np.float32(1.0 - 1.0 * i/n) for i in range(1, n + 1)]
L = linear_func(100)
def linear_profile(lp, n_1):
p_L = tf.constant(L, shape = [1, 100])
L_11 = tf.constant(1.0, shape = [1, int(np.round((lp) * n_1))])
L_12 = tf.zeros(shape = [1, int(np.round((1 - lp) * n_1))])
L1 = tf.concat((L_11, L_12), axis = 1)
p_L1 = tf.multiply(L1, p_L)
return p_L1
pc = np.linspace(0.1, 1.0, 10)
profile_1 = []
for i in pc:
p_L1 = linear_profile(i, 100)
profile = tf.stack(p_L1, axis = 0)
profile_1.append(profile)
profile_2 = tf.convert_to_tensor(profile_1, dtype=tf.float32)
# Drop Weights with profile coefficients
def multilayer_perceptron_drop(x):
logist_1 = []
for j in range(len(profile_1)):
Z_1 = tf.add(tf.matmul(x, parameters['W1']), parameters['b1'])
A_1 = tf.nn.relu(Z_1)
P_1 = tf.multiply(profile_2[j], A_1)
Z_2 = tf.add(tf.matmul(A_1, parameters['W2']), parameters['b2'])
A_2 = tf.nn.relu(Z_2)
P_2 = tf.multiply(profile_2[j], A_2)
out_layer = tf.add(tf.matmul(P_2, parameters['W3']), parameters['b3'])
logist_1.append(out_layer)
return logist_1
logist_1 = multilayer_perceptron_drop(X)
#Retrieved model
test_accuracy_2 = []
for k in range(len(logist_1)):
pred_1 = tf.nn.softmax(logist_1[k])
correct_prediction_1 = tf.equal(tf.argmax(pred_1, 1), tf.argmax(Y, 1))
accuracy_1 = tf.reduce_mean(tf.cast(correct_prediction_1, "float"))
test_accuracy_1 = accuracy_1.eval({X: mnist.test.images, Y: mnist.test.labels})*100
test_accuracy_2 = test_accuracy_2.append(test_accuracy_1)
#test_accuracy_1 = sess.run(accuracy_1, feed_dict = {X: mnist.test.images, Y: mnist.test.labels})
sess.close()
for l in range(len(pc)):
print("Percentage_Profile:", '%03d' % (l + 1), "Test Accuracy = {}".format(test_accuracy_2))
#print('Test Accuracy: {}'.format(test_accuracy_2))
toc = time.time()
print('Training Time is :' + str((toc - tic)/60) + 's')
输出:
Extracting /tmp/data/train-images-idx3-ubyte.gz
Extracting /tmp/data/train-labels-idx1-ubyte.gz
Extracting /tmp/data/t10k-images-idx3-ubyte.gz
Extracting /tmp/data/t10k-labels-idx1-ubyte.gz
Epoch: 001 cost = 0.463683842
Epoch: 003 cost = 0.156443127
Epoch: 005 cost = 0.108447251
Epoch: 007 cost = 0.083334308
Epoch: 009 cost = 0.064379380
Percentage_Profile: 001 Test Accuracy = None
Percentage_Profile: 002 Test Accuracy = None
Percentage_Profile: 003 Test Accuracy = None
Percentage_Profile: 004 Test Accuracy = None
Percentage_Profile: 005 Test Accuracy = None
Percentage_Profile: 006 Test Accuracy = None
Percentage_Profile: 007 Test Accuracy = None
Percentage_Profile: 008 Test Accuracy = None
Percentage_Profile: 009 Test Accuracy = None
Percentage_Profile: 010 Test Accuracy = None
Training Time is :1.06416635116s
答案 0 :(得分:2)
更改此行:
# WRONG! The result of `append` is `None`, not the list
test_accuracy_2 = test_accuracy_2.append(test_accuracy_1)
为...
# OK. Just collect the values in the list
test_accuracy_2.append(test_accuracy_1)