问题Ax≡B(MOD C)我这样做了,没关系:
{{1}}
现在我必须解决一个方程组,其中A =(5x + 7y)和A =(6x + 2y), B = 4且B = 12,C为26。
换句话说: (5x + 7y)≡4(mod 26) (6x + 2y)≡12(mod 26)
我该怎么做?
感谢。
答案 0 :(得分:0)
解决了,这是代码:
def congru(a0,a1,a2,b0,b1,b2,c):
for i in range(0,c):
for j in range(0,c):
if ((a0*i + a1*j) - a2)%c ==0 and ((b0*i +b1*j)-b2)%c==0:
print('x: %d y: %d' %( i, j))
答案 1 :(得分:0)
对于aX ≡ b (mod m)
线性同余,这是一个基于欧拉定理的功能更强大的Python解决方案,即使对于非常大的数,它也能很好地发挥作用:
def linear_congruence(a, b, m):
if b == 0:
return 0
if a < 0:
a = -a
b = -b
b %= m
while a > m:
a -= m
return (m * linear_congruence(m, -b, a) + b) // a
>>> linear_congruence(80484954784936, 69992716484293, 119315717514047)
>>> 45347150615590
对于X, Y
系统:将第一个方程乘以2
,将第二个方程乘以-7
,将它们相加并求解X
。然后替换X
并求解Y
。
答案 2 :(得分:0)
要解决线性同余系统,应使用中文提醒定理。 我使用python和AppJar(AppJar用于grafics)编写了完整的代码。 而且您可以从我的github个人资料中下载它:github profile, full code there
在那里您可以找到我使用的所有功能。 这很简单,我相信您会理解该代码,尽管它是用塞尔维亚语编写的。
答案 3 :(得分:0)
这是一个非常快速的线性同余求解器,可以在一秒钟内解决4096个字节数。递归版本在此长度上达到其最大深度:
#included if you use withstats=True, not needed otherwise
def ltrailing(N):
return len(str(bin(N))) - len(str(bin(N)).rstrip('0'))
#included if you use withstats=True, not needed otherwise
def _testx(n, b, withstats=False):
s = ltrailing(n - 1)
t = n >> s
if b == 1 or b == n - 1:
return True
else:
for j in range(0, s):
b = pow_mod(b, 2, n, withstats)
if b == n - 1:
return True
if b == 1:
return False
if withstats == True:
print(f"{n}, {b}, {s}, {t}, {j}")
if withstats == True:
print(f"{n}, {b}, {s}, {t}")
return False
def fastlinearcongruence(powx, divmodx, N, withstats=False):
x, y, z = egcditer(powx, N, withstats)
answer = (y*divmodx)%N
if withstats == True:
print(f"answer = {answer}, mrbt = {a}, mrst = {b}, mranswer = {_testx(N, answer)}")
if x > 1:
powx//=x
divmodx//=x
N//=x
if withstats == True:
print(f"powx = {powx}, divmodx = {divmodx}, N = {N}")
x, y, z = egcditer(powx, N, withstats)
if withstats == True:
print(f"x = {x}, y = {y}, z = {z}")
answer = (y*divmodx)%N
if withstats == True:
print(f"answer = {answer}, mrbt = {a}, mrst = {b}, mranswer = {_testx(N, answer)}")
answer = (y*divmodx)%N
if withstats == True:
print(f"answer = {answer}, mrbt = {a}, mrst = {b}, mranswer = {_testx(N, answer)}")
return answer
def egcditer(a, b, withstats=False):
s = 0
r = b
old_s = 1
old_r = a
quotient = 0
if withstats == True:
print(f"quotient = {quotient}, old_r = {old_r}, r = {r}, old_s = {old_s}, s = {s}")
while r!= 0:
quotient = old_r // r
old_r, r = r, old_r - quotient * r
old_s, s = s, old_s - quotient * s
if withstats == True:
print(f"quotient = {quotient}, old_r = {old_r}, r = {r}, old_s = {old_s}, s = {s}")
if b != 0:
bezout_t = quotient = (old_r - old_s * a) // b
if withstats == True:
print(f"bezout_t = {bezout_t}")
else:
bezout_t = 0
if withstats == True:
print("Bézout coefficients:", (old_s, bezout_t))
print("greatest common divisor:", old_r)
return old_r, old_s, bezout_t
要使用:
In [2703]: fastlinearcongruence(63,1,1009)
Out[2703]: 993
In [2705]: fastlinearcongruence(993,1,1009)
Out[2705]: 63
Also this is 100x faster than pow when performing this pow:
pow(1009, 2**bit_length()-1, 2**bit_length())
where the answer is 273.
This is equivalent to the much faster:
In [2713]: fastlinearcongruence(1009,1,1024)
Out[2713]: 273