我正在尝试计算并为测试中的得分创建一个新列。 function checkFalse(obj) {
for (var i in obj) {
for (var j in obj[i]) {
if (obj[i][j] == true) return true;
}
}
return false;
}
var test = {"colors":{"blue":false}, "sizes":{"square":false}};
console.log(checkFalse(test)); // for this you will get false since you do not have true in it.
var test = {"colors":{"blue":false}, "sizes":{"square":true}};
console.log(checkFalse(test)); // for this you will get true since you have a true in it.
是一个列,用于指定通过网格坐标选择的测试的正确答案。 Recall.CRESP
显示参与者的回应。
这些列看起来像这样:
Recall.RESP
因此,例如在此表的第1行中,参与者得到5/5正确,因为|Recall.CRESP |Recall.RESP |
|---------------------------------|---------------------------------|
|grid35grid51grid12grid43grid54 |grid35grid51grid12grid43grid54 |
|grid11gird42gird22grid51grid32 |grid11gird15gird55grid42grid32 |
的网格坐标与Recall.CRESP
匹配。但是在第2行中,参与者只有2/5正确,因为只有第一个和最后一个网格坐标是相同的。坐标的顺序必须匹配才能正确。
我的新列应分别为两行显示5和2。我不确定如何拆分网格坐标,也告诉R命令必须匹配才能正确。
答案 0 :(得分:1)
处理此问题的一个好方法是使用列表列,其中您可以以易于迭代的方式存储一整套响应或值。在tidyverse语法中,
library(tidyverse)
responses <- data_frame(Recall.CRESP = c("grid35grid51grid12grid43grid54", "grid11gird42gird22grid51grid32"),
Recall.RESP = c("grid35grid51grid12grid43grid54", "grid11gird15gird55grid42grid32"))
scored <- responses %>%
mutate_all(~strsplit(.x, '[^^]g[ri]{2}d')) %>% # split on all but first "grid"/"gird"
mutate(correct = map2(Recall.CRESP, Recall.RESP, `==`),
score = map_int(correct, sum))
scored
#> # A tibble: 2 x 4
#> Recall.CRESP Recall.RESP correct score
#> <list> <list> <list> <int>
#> 1 <chr [5]> <chr [5]> <lgl [5]> 5
#> 2 <chr [5]> <chr [5]> <lgl [5]> 2
如果您想仔细查看数据,请拉出各列。
答案 1 :(得分:0)
您可以使用简单tidyverse
和自定义mapply
功能split_grid
进行此操作(我假设只有数字相关):
df <- data_frame(Recall.CRESP = c("grid35grid51grid12grid43grid54", "grid11gird42gird22grid51grid32"),
Recall.RESP = c("grid35grid51grid12grid43grid54", "grid11gird15gird55grid42grid32"))
split_grid <- function(x) {
unlist(regmatches(x, gregexpr("[[:digit:]]+", x)))
}
compare <- function(x, y) {
sum(split_grid(x) == split_grid(y))
}
df$Res <- mapply(compare, df$Recall.CRESP, df$Recall.RESP)
# A tibble: 2 x 3
Recall.CRESP Recall.RESP Res
<chr> <chr> <int>
1 grid35grid51grid12grid43grid54 grid35grid51grid12grid43grid54 5
2 grid11gird42gird22grid51grid32 grid11gird15gird55grid42grid32 2