我正在尝试使用linprog来优化以下问题(uploaded in Google Drive)。数据集本身已上传here
到目前为止,我已经在Python中编写了以下实现:
import pandas as pd
import numpy as np
df = pd.read_csv('Supplier Specs.csv')
from scipy.optimize import linprog
def fromPandas(dataframe, colName):
return dataframe[[colName]].values.reshape(1,11)[0]
## A_ub * x <= b_ub
## A_eq * x == b_eq
A_eq = [1.0]*11
u_eq = [600.0] # demand
## reading the actual numbers from the pandas dataframe and then converting them to vectors
BAR = fromPandas(df, 'Brix / Acid Ratio')
acid = fromPandas(df, 'Acid (%)')
astringency = fromPandas(df, 'Astringency (1-10 Scale)')
color = fromPandas(df, 'Color (1-10 Scale)')
price = fromPandas(df, 'Price (per 1K Gallons)')
shipping = fromPandas(df, 'Shipping (per 1K Gallons)')
upperBounds = fromPandas(df, 'Qty Available (1,000 Gallons)')
lowerBounds = [0]*len(upperBounds) # list with length 11 and value 0
lowerBounds[2] = 0.4*u_eq[0] # adding the Florida tax bound
bnds = [(0,0)]*len(upperBounds) # bounds
for i in range(0,len(upperBounds)):
bnds[i] = (lowerBounds[i], upperBounds[i])
c = price + shipping # objective function coefficients
print("------------------------------------- Debugging Output ------------------------------------- \n")
print("Objective function coefficients: ", c)
print("Bounds: ", bnds)
print("Equality coefficients: ", A_eq)
print("BAR coefficients: ", BAR)
print("Astringency coefficients: ", astringency)
print("Color coefficients: ", color)
print("Acid coefficients: ", acid)
print("\n")
A_ub = [BAR, acid, astringency, color, -BAR, -acid, -astringency, -color] # coefficients for inequalities
b_ub = np.array([12.5, 1.0, 4.0, 5.5, -11.5, -0.75, 0, -4.5]) # limits for the inequalities
b_ub = b_ub * u_eq[0] # scaling the limits with the demand
xOptimized = linprog(c, A_ub, b_ub, [A_eq], u_eq, bounds=(bnds))
print(xOptimized) # the amounts of juice which we need to buy from each supplier
优化方法返回无法找到可行的起点。我相信我在使用该方法时存在一个主要错误,但到目前为止我无法理解它。
一些帮助?
提前致谢!
编辑: 目标函数的期望值是371724
预期的解决方案向量[0,0,240,0,15.8,0,0,0,126.3,109.7,108.2]
答案 0 :(得分:1)
这确实是我的过早猜测。 [A_eq]
当然是2维的1xn。当您从
A_ub = [BAR, acid, astringency, color, -BAR, -acid, -astringency, -color] # coefficients for inequalities
b_ub = np.array([12.5, 1.0, 4.0, 5.5, -11.5, -0.75, 0, -4.5]) # limits for the inequalities
这似乎是问题的症结所在。由于A_ub * x&lt; = b_ub,您需要寻找一个解决方案
BAR * x <= 12.5
和
-BAR * x&lt; = -11.5,即
11.5&lt; = BAR * x <= 12.5
这显然无法产生任何结果。你其实在寻找
A_ub = [BAR, acid, astringency, color, -BAR, -acid, -astringency, -color] # coefficients for inequalities
b_ub = np.array([12.5, 1.0, 4.0, 5.5, 11.5, 0.75, 0, 4.5]) # limits for the inequalities
现在收敛了,但是您现在在编辑中发布了与预期解决方案不同的结果。显然,您必须重新评估您的不等式参数,这些参数尚未在您的问题中指定。