决策树sklearn:PlayTennis数据集

时间:2018-01-14 11:23:51

标签: python numpy tree scikit-learn decision-tree

我正在练习使用sklearn作为决策树,我使用的是打网球数据集 DataSet

play_是目标列。

根据我的熵和信息增益的笔和纸计算,根节点应该是outlook_ column ,因为它具有最高的熵。

但不知何故,我当前的决策树有湿度作为根节点,看起来像这样: Decision Tree Current Scenario

我在python中的当前代码:

from sklearn.cross_validation import train_test_split 
from sklearn.tree import DecisionTreeClassifier 
from sklearn.metrics import accuracy_score 
from sklearn import tree 
from sklearn.preprocessing import LabelEncoder

import pandas as pd 
import numpy as np 

df = pd.read_csv('playTennis.csv') 

lb = LabelEncoder() 
df['outlook_'] = lb.fit_transform(df['outlook']) 
df['temp_'] = lb.fit_transform(df['temp'] ) 
df['humidity_'] = lb.fit_transform(df['humidity'] ) 
df['windy_'] = lb.fit_transform(df['windy'] )   
df['play_'] = lb.fit_transform(df['play'] ) 
X = df.iloc[:,5:9] 
Y = df.iloc[:,9]

X_train, X_test , y_train,y_test = train_test_split(X, Y, test_size = 0.3, random_state = 100) 

clf_entropy = DecisionTreeClassifier(criterion='entropy')
clf_entropy.fit(X_train.astype(int),y_train.astype(int)) 
y_pred_en = clf_entropy.predict(X_test)

print("Accuracy is :{0}".format(accuracy_score(y_test.astype(int),y_pred_en) * 100))

1 个答案:

答案 0 :(得分:0)

我的猜测是测试和火车分裂的发生方式是湿度分割最终会获得比前景更好的信息增益。你做过笔了吗?基于训练集或基于整个数据集的纸张计算?