我得到决策树分类器精度1.0,决策树输出中只有一个节点也只有混淆矩阵中的一个元素。 Random Forest也有类似的问题。
import pandas
import numpy
from sklearn.cross_validation import train_test_split
from sklearn.tree import DecisionTreeClassifier
import sklearn.metrics
data = pandas.read_csv('nesarc_pds.csv', low_memory=False)
#Setting variable to numeric.
data['CONSUMER'] = pandas.to_numeric(data['CONSUMER'], errors='coerce')
data['S2AQ16A'] = pandas.to_numeric(data['S2AQ16A'], errors='coerce')
data['S2DQ3C1'] = pandas.to_numeric(data['S2DQ3C1'], errors='coerce')
data['S2DQ3C2'] = pandas.to_numeric(data['S2DQ3C2'], errors='coerce')
data['S2DQ4C1'] = pandas.to_numeric(data['S2DQ4C1'], errors='coerce')
data['S2DQ4C2'] = pandas.to_numeric(data['S2DQ4C2'], errors='coerce')
data['S2DQ1'] = pandas.to_numeric(data['S2DQ1'], errors='coerce')
data['S2DQ2'] = pandas.to_numeric(data['S2DQ2'], errors='coerce')
data['SEX'] = pandas.to_numeric(data['SEX'], errors='coerce')
#subset data to the age 10 to 30 when started drinking
sub1=data[((data['S2AQ16A']>=10) & (data['S2AQ16A']<=30))]
#Copy new DataFrame
sub2 = sub1.copy()
#Recording missing data
sub2['S2AQ16A'] = sub2['S2AQ16A'].replace(99, numpy.nan)
sub2['S2DQ3C1'] = sub2['S2DQ3C1'].replace(99, numpy.nan)
sub2['S2DQ3C2'] = sub2['S2DQ3C2'].replace(9, numpy.nan)
sub2['S2DQ4C1'] = sub2['S2DQ4C1'].replace(99, numpy.nan)
sub2['S2DQ4C2'] = sub2['S2DQ4C2'].replace(9, numpy.nan)
sub2['S2DQ1'] = sub2['S2DQ1'].replace(9, numpy.nan)
sub2['S2DQ2'] = sub2['S2DQ2'].replace(9, numpy.nan)
#creating a secondary variable for calculating sibling number.
sub2['SIBNO'] = sub2['S2DQ3C1'] + sub2['S2DQ4C1']
#defining new variable for sibling drinking status by combining data of brothers and sisters
def SIBSTS(row):
if any([row['S2DQ3C2'] == 1, row['S2DQ4C2'] == 1]) :
return 1
elif all([row['S2DQ3C2'] == 2, row['S2DQ4C2'] == 2]) :
return 0
else :
return numpy.nan
sub2['SIBSTS'] = sub2.apply(lambda row: SIBSTS (row),axis=1)
#defining new variable for parent status status of drinking
def PRSTS(row):
if any([row['S2DQ1'] == 1, row['S2DQ2'] == 1]) :
return 1
elif all([row['S2DQ1'] == 2, row['S2DQ2'] == 2]) :
return 0
else :
return numpy.nan
sub2['PRSTS'] = sub2.apply(lambda row: PRSTS (row),axis=1)
#recoding values for 'CONSUMER' into a new variable, DRSTS
recode1 = {1: 1, 2: 1, 3: 0}
sub2['DRSTS']= sub2['CONSUMER'].map(recode1)
#recoding new values for SEX variable
recode2 = {1: 1, 2: 0}
sub2['GEN']= sub2['SEX'].map(recode2)
data_clean = sub2.dropna()
data_clean.dtypes
data_clean.describe()
#Modeling and Prediction
#Split into training and testing sets
predictors = data_clean[['S2AQ16A','SIBNO','SIBSTS','PRSTS','GEN']]
targets = data_clean['DRSTS']
pred_train, pred_test, tar_train, tar_test = train_test_split(predictors, targets, test_size=.4)
print(pred_train.shape)
print(pred_test.shape)
print(tar_train.shape)
print(tar_test.shape)
#Build model on training data
classifier=DecisionTreeClassifier()
classifier=classifier.fit(pred_train,tar_train)
predictions=classifier.predict(pred_test)
print(sklearn.metrics.confusion_matrix(tar_test,predictions))
print(sklearn.metrics.accuracy_score(tar_test, predictions))
#Displaying the decision tree
from sklearn import tree
#from StringIO import StringIO
import io
#from StringIO import StringIO
from IPython.display import Image
out = io.BytesIO()
tree.export_graphviz(classifier, out_file=out)
import pydotplus
graph=pydotplus.graph_from_dot_data(out.getvalue())
Image(graph.create_png())
graph.write_pdf("iris.pdf")
输出:
代码中使用的数据集 - nesar_pds
答案 0 :(得分:2)
在训练数据集上构建模型后,您应该使用Test数据集来预测分类器的准确度。
此行中出现错误predictions=classifier.predict(pred_train)
应该是:predictions=classifier.predict(pred_test)
答案 1 :(得分:0)
在print(sklearn.metrics.accuracy_score(tar_test, predictions))
中,将其用作print(sklearn.metrics.accuracy_score(tar_test, predictions, normalize = False))
。根据{{3}},它说:'如果为假,则返回正确分类的样本数。否则,返回正确分类的样本的分数。在该结果中,正确预测的样本的数量与分离测试的目标的数量相同。然后,也许算法正确预测(真正奇怪的是)。